Comparative Pharmacologic Studies on Synthetic and Recombinant Inhibitors of Thrombin

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Pharmacologic Studies on Synthetic and Recombinant Inhibitors of Thrombin Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1996 Comparative Pharmacologic Studies on Synthetic and Recombinant Inhibitors of Thrombin Demetra D. Callas Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Pharmacology Commons Recommended Citation Callas, Demetra D., "Comparative Pharmacologic Studies on Synthetic and Recombinant Inhibitors of Thrombin" (1996). Dissertations. 3406. https://ecommons.luc.edu/luc_diss/3406 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1996 Demetra D. Callas LOYOLA UNIVERSITY CHICAGO COMPARATIVE PHARMACOLOGIC STUDIES ON SYNTHETIC AND RECOMBINANT INHIBITORS OF THROMBIN VOLUME I (CHAPTERS I, II, III, IV) A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS BY DEMETRA D. CALLAS CHICAGO, ILLINOIS MAY 1996 LOYOLA UNIVERSITY MEDICAL CENTER LIBRARY Copyright by Demetra D. Callas, 1996 All rights reserved. ii ACKNOWLEDGEMENTS I would like to take this opportunity to thank all of those who helped me and supported me throughout my graduate studies. I will always be grateful to my mentor, Dr. Jawed Fareed, for his guidance and support during the past six years. Dr. Fareed has not been only a source of scientific knowledge for me, but has also taught me many other aspects that are important and contribute to the survival of a scientist in our days and for these I will always be thankful. I thank the members of my dissertation committee, Dr. Sandor Bajusz, Dr. Edward W. Bermes Jr., Dr. Joseph R. Davis, Dr. Yale Nemerson and Dr. Loek Van de Kar, for their contributions, suggestions and critical evaluation of various parts of this dissertation and for their efforts in evaluating overall this body of work. I also thank Dr. Umberto Cornelli for his critical and insightful comments on this manuscript. I express my sincere appreciation to my colleagues at the Hemostasis Research Laboratories for teaching me many of the techniques used in these studies: Peter Bacher, Mike Koza, Debra Hoppensteadt, Dr. Ahmad Ahsan and Dr. Omer Iqbal. I also appreciate the assistance received by Dr. Tom Herndon, Scott Asselmeyer and Dr. Kaiding Fu. I thank our secretary, Ms. Elayne Grzeda, for her help and for always being cheerful and encouraging. I thank my classmate, colleague and friend Walter Jeske for his suggestions and his attentive ears, since the beginning of our graduate careers. iii I thank Dr. Jeanine Walenga for her insights, comments, suggestions and support with many of the projects and in manuscript preparation. I thank Peter Molnar and Dan Murphy for their invaluable assistance with the computer-related work and slide preparation. I thank Ms. Debra Arendziak for expediting and facilitating some of my work in the department of Pathology. I am thankful to Dr. Volker Eschenfelder, Dr. John Fenton II, Dr. Bill Drohan and Dr. Richard Schwarz for their generous contributions and suggestions. Last, but not least, I am most thankful to Dr. Klaus Breddin, Ms. Dietrich and Dr. Wolfram Raake for teaching me, guiding me and helping me establish the rat laser-induced thrombosis model, with utmost patience and sincere interest. Most of all, I would like to acknowledge and thank my parents and my brothers for their infinite love, moral support, trust and confidence they have in me and for never failing to make me smile through difficult times. IV DEDICATION To my parents TABLE OF CONTENTS ACKNOWLEDGEMENTS .................................. m LIST OF FIGURES ...................................... xvii LIST OF TABLES ...................................... xxii LIST OF STANDARD ABBREVIATIONS ...................... xxviii LIST OF NON-STANDARD ABBREVIATIONS . xxxii VOLUME I Chapter I. PURPOSE . 1 II. REVIEW OF LITERATURE .............................. 8 A. Overview of Hemostasis . 8 B. Role of Serine Proteases in the Regulation of Coagulation, Fibrinolytic, Kallikrein and Complement Pathways. .................... 12 1. Biochemical Characteristics of Serine Proteases . 17 2. Role of Serine Proteases and Cofactors in the Hemostatic and Hemorrhagic Processes . 20 a. High Molecular Weight Kininogen (HMWK) ............. 22 b. Prekallikrein ................................. 23 c. Factor XII . 23 d. Factor XI ................................... 24 e. Factor IX ................................... 25 f. Factor VIII/von Willebrand Factor Complex . 26 g. Tissue Factor (TF) ............................. 27 h. Factor VII . 28 i. Factor X . 29 J. Factor XIII .................................. 30 k. Plasmin . 30 1. Tissue Type Plasminogen Activator (tPA) ............... 31 m. Urokinase Type Plasminogen Activator (uPA) ............ 32 3. Regulation of Serine Proteases by Serpins . 32 v a. Antithrombin . 33 b. Heparin Cofactor II ............................. 33 c. Tissue Factor Pathway Inhibitor (TFPI) ................ 35 d. Protein C . 36 e. Protein S ................................... 37 f. Factor V . 37 g. a 2Plasmin Inhibitor ............................. 38 h. Plasminogen Activator Inhibitors ..................... 38 C. Thrombin: Structure, Function, Physiologic, Pathologic and Pharmacologic Mechanisms . 39 1. Biology of Thrombin Formation and Structure of the Thrombin Molecule .................................... 39 2. Molecular Variants of Thrombin ....................... 43 3. Thrombin Standardization ........................... 43 4. Physiologic Regulation of Thrombin Formation .............. 44 5. Cellular Interactions of Thrombin . 45 6. Thrombin Receptors ............................... 45 D. Pharmacologic Control of Thrombin's Action .................. 46 1. Inhibition of Thrombin Receptors ....................... 47 2. Inhibition of Cellular Processes Mediated by Thrombin ......... 47 3. Inhibition of Thrombin Generation ...................... 48 4. Inhibition of Formed Thrombin ........................ 53 E. Thrombin Inhibitors .................................. 55 1. Inhibitors of Plasma Origin . 55 2. Synthetic Inhibitors ............................... 56 a. Compounds Restricted to the Specificity Pocket of the Catalytic Domain of Thrombin . 57 b. Compounds Extending Unidirectionally Beyond the Specificity Pocket of the Catalytic Site of Thrombin .................... 58 Vl c. Compounds Extending Bidirectionally Beyond the Specificity Pocket of the Catalytic Domain of Thrombin ................... 59 3. Peptide Inhibitors . 61 a. Aldehyde Derivatives . 62 b. Chloromethyl Ketone Derivatives .................... 64 c. Nitrile Derivatives ............................. 65 d. Boronic acid Derivatives . 66 e. Other Peptide Analogues ......................... 68 4. Recombinant Thrombin Inhibitors ....................... 69 a. Aptamers . 69 b. Hirudin and its Variants .......................... 69 5. Thrombin Inhibitors not Directed Against its Catalytic Site ....... 72 6. Chimeric Thrombin Inhibitors ......................... 73 7. Thrombin Directed Antibodies . 75 F. Clinical Applications of Thrombin Inhibitors ................... 76 1. Antithrombin . 77 2. Argatroban .................................... 77 3. Efegatran . 79 4. Inogatran ...................................... 80 5. Napsagatran .................................... 80 6. Hirudin ....................................... 80 7. Hirulog . 85 G. Drug Interactions . 86 H. Synopsis ......................................... 92 III. MATERIALS AND METHODS ............................ 93 A. Synthesis and Characterization of Serine Protease Inhibitors .......... 93 Vll B. Analytical Profile of Peptide Thrombin Inhibitors ................ 96 1. D-Phe-Pro-Arg-H, D-MePhe-Pro-Arg-H and Boc-D-Phe-Pro-Arg-H Purity Determination . 97 2. Ac-(D)Phe-Pro-boroArg-OH Purity Determination ............ 98 C. Analytical Profile of the Unfractionated Heparin ................. 98 D. Biochemical Assays . 99 1. Thrombin Titration Assay ........................... 99 2. Thrombin Time (TT) in a Fibrinogen Based System .......... 101 3. Antithrombin Assays ............................. 102 a. Preparation of Normal Human Plasma (NHP) ............ 103 b. Antithrombin Amidolytic Assay with NHP .............. 103 c. Preparation of Normal Rabbit Plasma (NRP) . 104 d. Antithrombin Amidolytic Assay with NRP . 105 4. Anti-Xa Assays ................................. 105 a. Anti-Xa Amidolytic Assay with NHP ................. 106 b. Anti-Xa Amidolytic Assay with NRP ................. 106 5. Inhibitory Actions of Various Thrombin Inhibitors on Specific Serine Proteases . 107 a. Inhibition of Chymotrypsin . 108 b. Inhibition of Trypsin ........................... 108 c. Inhibition of Activated Protein C (APC) . 109 d. Inhibition of Glandular Kallikrein . 109 e. Inhibition of Tissue Plasminogen Activator (tPA) ......... 109 f. Inhibition of Urokinase . 110 g. Inhibition of Plasmin ........................... 110 6. Inhibition of Plasminogenolysis . 110 a. Pure Plasminogen System . 111 b. NHP System ................................ 112 7. Inhibition of Extrinsic Activation Systems in Fibrinogen Deficient Human Plasma by Thrombin Inhibitors . 113 a. Inhibition of Extrinsic Thrombin
Recommended publications
  • The Production of Coagulation Factor VII by Adipocytes Is Enhanced by Tumor Necrosis Factor-Α Or Isoproterenol
    International Journal of Obesity (2015) 39, 747–754 © 2015 Macmillan Publishers Limited All rights reserved 0307-0565/15 www.nature.com/ijo ORIGINAL ARTICLE The production of coagulation factor VII by adipocytes is enhanced by tumor necrosis factor-α or isoproterenol N Takahashi1,2, T Yoshizaki3, N Hiranaka1, O Kumano1,4, T Suzuki1,4, M Akanuma5,TYui5, K Kanazawa6, M Yoshida7, S Naito7, M Fujiya2, Y Kohgo2 and M Ieko1 BACKGROUND: A relationship has been reported between blood concentrations of coagulation factor VII (FVII) and obesity. In addition to its role in coagulation, FVII has been shown to inhibit insulin signals in adipocytes. However, the production of FVII by adipocytes remains unclear. OBJECTIVE: We herein investigated the production and secretion of FVII by adipocytes, especially in relation to obesity-related conditions including adipose inflammation and sympathetic nerve activation. METHODS: C57Bl/6J mice were fed a low- or high-fat diet and the expression of FVII messenger RNA (mRNA) was then examined in adipose tissue. 3T3-L1 cells were used as an adipocyte model for in vitro experiments in which these cells were treated with tumor necrosis factor-α (TNF-α) or isoproterenol. The expression and secretion of FVII were assessed by quantitative real-time PCR, Western blotting and enzyme-linked immunosorbent assays. RESULTS: The expression of FVII mRNA in the adipose tissue of mice fed with high-fat diet was significantly higher than that in mice fed with low-fat diet. Expression of the FVII gene and protein was induced during adipogenesis and maintained in mature adipocytes. The expression and secretion of FVII mRNA were increased in the culture medium of 3T3-L1 adipocytes treated with TNF-α, and these effects were blocked when these cells were exposed to inhibitors of mitogen-activated kinases or NF-κB activation.
    [Show full text]
  • MONONINE (“Difficulty ® Monoclonal Antibody Purified in Concentrating”; Subject Recovered)
    CSL Behring IU/kg (n=38), 0.98 ± 0.45 K at doses >95-115 IU/kg (n=21), 0.70 ± 0.38 K at doses >115-135 IU/kg (n=2), 0.67 K at doses >135-155 IU/kg (n=1), and 0.73 ± 0.34 K at doses >155 IU/kg (n=5). Among the 36 subjects who received these high doses, only one (2.8%) Coagulation Factor IX (Human) reported an adverse experience with a possible relationship to MONONINE (“difficulty ® Monoclonal Antibody Purified in concentrating”; subject recovered). In no subjects were thrombo genic complications MONONINE observed or reported.4 only The manufacturing procedure for MONONINE includes multiple processing steps that DESCRIPTION have been designed to reduce the risk of virus transmission. Validation studies of the Coagulation Factor IX (Human), MONONINE® is a sterile, stable, lyophilized concentrate monoclonal antibody (MAb) immunoaffinity chromatography/chemical treatment step and of Factor IX prepared from pooled human plasma and is intended for use in therapy nanofiltration step used in the production of MONONINE doc ument the virus reduction of Factor IX deficiency, known as Hemophilia B or Christmas disease. MONONINE is capacity of the processes employed. These studies were conducted using the rel evant purified of extraneous plasma-derived proteins, including Factors II, VII and X, by use of enveloped and non-enveloped viruses. The results of these virus validation studies utilizing immunoaffinity chromatography. A murine monoclonal antibody to Factor IX is used as an a wide range of viruses with different physicochemical properties are summarized in Table affinity ligand to isolate Factor IX from the source material.
    [Show full text]
  • The Rare Coagulation Disorders
    Treatment OF HEMOPHILIA April 2006 · No. 39 THE RARE COAGULATION DISORDERS Paula HB Bolton-Maggs Department of Haematology Manchester Royal Infirmary Manchester, United Kingdom Published by the World Federation of Hemophilia (WFH) © World Federation of Hemophilia, 2006 The WFH encourages redistribution of its publications for educational purposes by not-for-profit hemophilia organizations. In order to obtain permission to reprint, redistribute, or translate this publication, please contact the Communications Department at the address below. This publication is accessible from the World Federation of Hemophilia’s web site at www.wfh.org. Additional copies are also available from the WFH at: World Federation of Hemophilia 1425 René Lévesque Boulevard West, Suite 1010 Montréal, Québec H3G 1T7 CANADA Tel. : (514) 875-7944 Fax : (514) 875-8916 E-mail: [email protected] Internet: www.wfh.org The Treatment of Hemophilia series is intended to provide general information on the treatment and management of hemophilia. The World Federation of Hemophilia does not engage in the practice of medicine and under no circumstances recommends particular treatment for specific individuals. Dose schedules and other treatment regimes are continually revised and new side effects recognized. WFH makes no representation, express or implied, that drug doses or other treatment recommendations in this publication are correct. For these reasons it is strongly recommended that individuals seek the advice of a medical adviser and/or to consult printed instructions provided by the pharmaceutical company before administering any of the drugs referred to in this monograph. Statements and opinions expressed here do not necessarily represent the opinions, policies, or recommendations of the World Federation of Hemophilia, its Executive Committee, or its staff.
    [Show full text]
  • The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of the American College of Cardiology providedVol. by 41, Elsevier No. 4 - SupplPublisher S Connector © 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Science Inc. PII S0735-1097(02)02687-6 The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary Syndromes John Eikelboom, MBBS, MSC, FRACP, FRCPA,* Harvey White, MB, CHB, DSC, FRACP, FACC,† Salim Yusuf, MBBS, DPHIL, FRCP (UK), FRCPC, FACC‡ Perth, Australia; Auckland, New Zealand; and Hamilton, Ontario, Canada The central role of thrombin in the initiation and propagation of intravascular thrombus provides a strong rationale for direct thrombin inhibitors in acute coronary syndromes (ACS). Direct thrombin inhibitors are theoretically likely to be more effective than indirect thrombin inhibitors, such as unfractionated heparin or low-molecular-weight heparin, because the heparins block only circulating thrombin, whereas direct thrombin inhibitors block both circulating and clot-bound thrombin. Several initial phase 3 trials did not demonstrate a convincing benefit of direct thrombin inhibitors over unfractionated heparin. However, the Direct Thrombin Inhibitor Trialists’ Collaboration meta-analysis confirms the superiority of direct thrombin inhibitors, particularly hirudin and bivalirudin, over unfractionated heparin for the prevention of death or myocardial infarction (MI) during treatment in patients with ACS, primarily due to a reduction in MI (odds ratio, 0.80; 95% confidence interval, 0.70 to 0.91) with little impact on death. The absolute risk reduction in the composite of death or MI at the end of treatment (0.8%) was similar at 30 days (0.7%), indicating no loss of benefit after cessation of therapy.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • 1 Oral Anticoagulants and Risk of Dementia: a Systematic Review
    Oral Anticoagulants and Risk of Dementia: A Systematic Review and Meta-analysis of Observational Studies and Randomized Controlled Trials Pajaree Mongkhon, PharmD1,2,3; Abdallah Y. Naser, MBA3; Laura Fanning, BPharm (Hons) MPH4; Gary Tse, PhD FACC FRCP5,6; Wallis C.Y. Lau, PhD3; Ian C.K. Wong, PhD3,7,8; Chuenjid Kongkaew, PhD1,3,9 1Centre for Safety and Quality in Health, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Thailand 2School of Pharmaceutical Sciences, University of Phayao, Thailand 3Research Department of Practice and Policy, School of Pharmacy, University College London, London, United Kingdom 4Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia 5Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China 6Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China 7Centre for Safe Medication Practice and Research Department of Pharmacology and Pharmacy University of Hong Kong 8Centre for Medication Optimisation Research and Education (CMORE), University College London Hospital, United Kingdom 9Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand 1 Corresponding author Chuenjid Kongkaew, Ph.D. Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University 99 Moo 9, Phitsanulok-Nakhon Sawan Road, Tha Pho, Mueang Phitsanulok, Phitsanulok 65000, Thailand. Tel: 66 55 961825 Fax: 66 55 963731 E-mail: [email protected] Word count: 4320 words (excluding title page, abstract, references, figures and tables) Number of references: 42 references Number of figures: 3 figures Number of tables: 3 tables 2 Abstract Atrial fibrillation (AF) is a documented risk factor for dementia.
    [Show full text]
  • Coagulation Factors Directly Cleave SARS-Cov-2 Spike and Enhance Viral Entry
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.31.437960; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. Edward R. Kastenhuber1, Javier A. Jaimes2, Jared L. Johnson1, Marisa Mercadante1, Frauke Muecksch3, Yiska Weisblum3, Yaron Bram4, Robert E. Schwartz4,5, Gary R. Whittaker2 and Lewis C. Cantley1,* Affiliations 1. Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA. 2. Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA. 3. Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA. 4. Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA. 5. Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA. *Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.03.31.437960; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary Coagulopathy is recognized as a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. Other host proteases, including TMPRSS2, are recognized to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing viral entry.
    [Show full text]
  • Thrombin-Jmi
    THROMBIN-JMI - thrombin, topical (bovine) THROMBIN-JMI; THROMBIN-JMI PUMP SPRAY KIT; THROMBIN-JMI SYRINGE SPRAY KIT - thrombin, topical (bovine) THROMBIN-JMI SYRINGE SPRAY KIT - thrombin, topical (bovine) THROMBIN-JMI EPISTAXIS KIT - thrombin, topical (bovine) King Pharmaceuticals, Inc. ---------- THROMBIN, TOPICAL U.S.P. (BOVINE ORIGIN) THROMBIN-JMI® Thrombin, Topical (Bovine) must not be injected! Apply on the surface of bleeding tissue. DESCRIPTION The thrombin in Thrombin, Topical (Bovine Origin) THROMBIN-JMI® is a protein substance produced through a conversion reaction in which prothrombin of bovine origin is activated by tissue thromboplastin of bovine origin in the presence of calcium chloride. It is supplied as a sterile powder that has been freeze-dried in the final container. Also contained in the preparation are mannitol and sodium chloride. Mannitol is included to make the dried product friable and more readily soluble. The material contains no preservative. THROMBIN-JMI® has been chromatographically purified and further processed by ultrafiltration. Analytical studies demonstrate the current manufacturing process’ capability to remove significant amounts of extraneous proteins, and result in a reduction of Factor Va light chain content to levels below the limit of detection of semi-quantitative Western Blot assay (<92 ng/mL, when reconstituted as directed). The clinical significance of these findings is unknown. CLINICAL PHARMACOLOGY THROMBIN-JMI® requires no intermediate physiological agent for its action. It clots the fibrinogen of the blood directly. Failure to clot blood occurs in the rare case where the primary clotting defect is the absence of fibrinogen itself. The speed with which thrombin clots blood is dependent upon the concentration of both thrombin and fibrinogen.
    [Show full text]
  • 360 BCBSA Reference Number: 2.01.13
    Pharmacy Medical Policy Human Anti-hemophilic Factor Table of Contents • Policy: Commercial • Policy History • Endnotes • Policy: Medicare • Information Pertaining to All Policies • Forms • Coding Information • References Policy Number: 360 BCBSA Reference Number: 2.01.13 Related Policies None Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Note: All requests for indications listed and not listed on the medical policy guidelines may be submitted to BCBSMA Pharmacy Operations by completing the Prior Authorization Form on the last page of this document. This medication is not covered by the pharmacy benefit. It is covered by the Medical Benefit or as a Home Infusion Therapy. We may cover: Factor VII • Coagulation factor indicated for the treatment of bleeding episodes and perioperative management in adults and children with hemophilia A or B with inhibitors, congenital Factor VII (FVII) deficiency, and Glanzmann’s thrombasthenia with refractoriness to platelet transfusions, with or without antibodies to platelets & Treatment of bleeding episodes and perioperative management in adults with acquired hemophilia. Factor VIII • Human anti-hemophilic factor (AHF) maintenance therapy (prophylaxis) as needed to maintain trough levels at 1% or greater in patients with severe Hemophilia A (AHF activity less than 1% of normal).1 • Human anti-hemophilic factor (AHF) for treatment and/or management of bleeding episodes in surgical patients with mild hemophilia (AHF activity 5%-30%) or moderately severe hemophilia (AHF activity
    [Show full text]
  • 1 Elevated Protein Levels and Altered Cellular Expression of Factor VII
    Thorax Online First, published on May 4, 2007 as 10.1136/thx.2006.069658 Elevated protein levels and altered cellular expression of factor VII-activating protease Thorax: first published as 10.1136/thx.2006.069658 on 4 May 2007. Downloaded from (FSAP) in the lungs of patients with acute respiratory distress syndrome (ARDS) Malgorzata Wygrecka1*, Philipp Markart2*, Ludger Fink3, Andreas Guenther2, and Klaus T. Preissner1 Departments of 1Biochemistry, 2Internal Medicine, and 3Pathology, Faculty of Medicine, University of Giessen Lung Center, Giessen, Germany Corresponding author: Malgorzata Wygrecka, PhD Department of Biochemistry, Faculty of Medicine, University of Giessen Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany Phone: +49-641-99-47501 Fax: +49-641-99-47509 [email protected] http://thorax.bmj.com/ on September 27, 2021 by guest. Protected copyright. Keywords: acute lung injury, acute respiratory distress syndrome, factor VII and single-chain plasminogen activator-activating protease, hemostasis, hyaluronan binding protein 2 Word count: 4040 * both authors contributed equally to the manuscript 1 Copyright Article author (or their employer) 2007. Produced by BMJ Publishing Group Ltd (& BTS) under licence. ABSTRACT Thorax: first published as 10.1136/thx.2006.069658 on 4 May 2007. Downloaded from Background: ARDS is characterized by inflammation of the lung parenchyma and alterations of the alveolar haemostasis with extravascular fibrin deposition. Factor VII-activating protease (FSAP) is a recently described serine protease in plasma and tissues, known to be involved in haemostasis, cell proliferation and migration. Methods: We investigated FSAP protein (western blotting/ELISA/immunohistochemistry) and activity (coagulation/fibrinolysis assays) in plasma, bronchoalveolar lavage (BAL) fluids and lung tissue of mechanically ventilated patients with early ARDS as compared to patients with cardiogenic pulmonary oedema and healthy controls.
    [Show full text]
  • Factor IX Complex (Human - Bebulin, Profilnine) Reference Number: ERX.SPMN.201 Effective Date: 01/17 Coding Implications Last Review Date: Revision Log
    Clinical Policy: Factor IX complex (Human - Bebulin, Profilnine) Reference Number: ERX.SPMN.201 Effective Date: 01/17 Coding Implications Last Review Date: Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Policy/Criteria It is the policy of health plans affiliated with Envolve Pharmacy SolutionsTM that factor IX complex (Bebulin®, Profilnine®) is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Hemophilia B (must meet all): 1. Prescribed by or in consultation with a hematologist; 2. Diagnosis of hemophilia B; 3. Agent will used for prevention/control of bleeding episodes. Approval duration: 3 months B. Other diagnoses/indications: Refer to ERX.SPMN.16 - Global Biopharm Policy. II. Continued Approval A. Hemophilia B (must meet all): 1. Currently receiving medication via health plan benefit or member has previously met all initial approval criteria. Approval duration: 3 months B. Other diagnoses/indications (must meet 1 or 2): 1. Currently receiving medication via health plan benefit and documentation supports positive response to therapy; or 2. Refer to ERX.SPMN.16 - Global Biopharm Policy. Background Description/Mechanism of Action: Factor IX complex replaces deficient clotting factors including factor X. Hemophilia B, or Christmas disease, is an X-linked recessively inherited disorder of blood coagulation characterized by insufficient or abnormal synthesis of the clotting protein factor IX. Factor IX is a vitamin K-dependent coagulation factor which is synthesized in the liver. Factor IX is activated by factor XIa in the intrinsic coagulation pathway. Activated factor IX (IXa), in combination with factor VII: C, activates factor X to Xa, resulting ultimately in the conversion of prothrombin to thrombin and the formation of a fibrin clot.
    [Show full text]
  • Protein C Product Monograph 1995 COAMATIC® Protein C Protein C
    Protein C Product Monograph 1995 COAMATIC® Protein C Protein C Protein C, Product Monograph 1995 Frank Axelsson, Product Information Manager Copyright © 1995 Chromogenix AB. Version 1.1 Taljegårdsgatan 3, S-431 53 Mölndal, Sweden. Tel: +46 31 706 20 00, Fax: +46 31 86 46 26, E-mail: [email protected], Internet: www.chromogenix.se COAMATIC® Protein C Protein C Contents Page Preface 2 Introduction 4 Determination of protein C activity with 4 snake venom and S-2366 Biochemistry 6 Protein C biochemistry 6 Clinical Aspects 10 Protein C deficiency 10 Assay Methods 13 Protein C assays 13 Laboratory aspects 16 Products 17 Diagnostic kits from Chromogenix 17 General assay procedure 18 COAMATIC® Protein C 19 References 20 Glossary 23 3 Protein C, version 1.1 Preface The blood coagulation system is carefully controlled in vivo by several anticoagulant mechanisms, which ensure that clot propagation does not lead to occlusion of the vasculature. The protein C pathway is one of these anticoagulant systems. During the last few years it has been found that inherited defects of the protein C system are underlying risk factors in a majority of cases with familial thrombophilia. The factor V gene mutation recently identified in conjunction with APC resistance is such a defect which, in combination with protein C deficiency, increases the thrombosis risk considerably. The Chromogenix Monographs [Protein C and APC-resistance] give a didactic and illustrated picture of the protein C environment by presenting a general view of medical as well as technical matters. They serve as an excellent introduction and survey to everyone who wishes to learn quickly about this field of medicine.
    [Show full text]