© 2021 Kayla Calapa All Rights Reserved
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Regeneration of Unconventional Natural Gas by Methanogens Co
www.nature.com/scientificreports OPEN Regeneration of unconventional natural gas by methanogens co‑existing with sulfate‑reducing prokaryotes in deep shale wells in China Yimeng Zhang1,2,3, Zhisheng Yu1*, Yiming Zhang4 & Hongxun Zhang1 Biogenic methane in shallow shale reservoirs has been proven to contribute to economic recovery of unconventional natural gas. However, whether the microbes inhabiting the deeper shale reservoirs at an average depth of 4.1 km and even co-occurring with sulfate-reducing prokaryote (SRP) have the potential to produce biomethane is still unclear. Stable isotopic technique with culture‑dependent and independent approaches were employed to investigate the microbial and functional diversity related to methanogenic pathways and explore the relationship between SRP and methanogens in the shales in the Sichuan Basin, China. Although stable isotopic ratios of the gas implied a thermogenic origin for methane, the decreased trend of stable carbon and hydrogen isotope value provided clues for increasing microbial activities along with sustained gas production in these wells. These deep shale-gas wells harbored high abundance of methanogens (17.2%) with ability of utilizing various substrates for methanogenesis, which co-existed with SRP (6.7%). All genes required for performing methylotrophic, hydrogenotrophic and acetoclastic methanogenesis were present. Methane production experiments of produced water, with and without additional available substrates for methanogens, further confrmed biomethane production via all three methanogenic pathways. Statistical analysis and incubation tests revealed the partnership between SRP and methanogens under in situ sulfate concentration (~ 9 mg/L). These results suggest that biomethane could be produced with more fexible stimulation strategies for unconventional natural gas recovery even at the higher depths and at the presence of SRP. -
Quasialign: Position Sensitive P-Mer Frequency Clustering with Applications to Genomic Classification and Differentiation
QuasiAlign: Position Sensitive P-Mer Frequency Clustering with Applications to Genomic Classification and Differentiation Anurag Nagar Michael Hahsler Southern Methodist University Southern Methodist University Abstract Recent advances in Metagenomics and the Human Microbiome provide a complex landscape for dealing with a multitude of genomes all at once. One of the many challenges in this field is classification of the genomes present in a sample. Effective metagenomic classification and diversity analysis require complex representations of taxa. With this package we develop a suite of tools, based on novel quasi-alignment techniques to rapidly classify organisms using our new approach on a laptop computer instead of several multi- processor servers. This approach will facilitate the development of fast and inexpensive devices for microbiome-based health screening in the near future. Keywords:~data mining, clustering, Markov chain. 1. Introduction Metagenomics (Handelsman, Rondon, Brady, Clardy, and Goodman 1998) and the Human Microbiome Turnbaugh, Ley, Hamady, Fraser-Liggett, Knight, and Gordon(2007); Mai, Ukhanova, and Baer(2010) provide a complex landscape for dealing with a multitude of genomes all at once. One of the many challenges in this field is classification of the genomes present in the sample. Effective metagenomic classification and diversity analysis require complex representations of taxa. A common characteristic of most sequence-based classification techniques (e.g., BAlibase (Smith and Waterman 1981), BLAST (Altschul, Gish, Miller, Myers, and Lipman 1990), T-Coffee (Notredame, Higgins, and Heringa 2000), MAFFT (Katoh, Misawa, Kuma, and Miyata 2002), MUSCLE (Edgar 2004b,a), Kalign (Lassmann and Sonnhammer 2006) and ClustalW2 and ClustalX2 (Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam, Valentin, Wallace, Wilm, Lopez, Thompson, Gibson, and Higgins 2007)) is the use of com- putationally very expensive sequence alignment. -
EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated -
Draft Genome Sequence of Dethiobacter Alkaliphilus Strain AHT1T, a Gram-Positive Sulfidogenic Polyextremophile Emily Denise Melton1, Dimitry Y
Melton et al. Standards in Genomic Sciences (2017) 12:57 DOI 10.1186/s40793-017-0268-9 EXTENDED GENOME REPORT Open Access Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile Emily Denise Melton1, Dimitry Y. Sorokin2,3, Lex Overmars1, Alla L. Lapidus4, Manoj Pillay6, Natalia Ivanova5, Tijana Glavina del Rio5, Nikos C. Kyrpides5,6,7, Tanja Woyke5 and Gerard Muyzer1* Abstract Dethiobacter alkaliphilus strain AHT1T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is a Gram-positive bacterium with low GC content, within the phylum Firmicutes. Here we report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1T was sequenced by the Joint Genome Institute (JGI) as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications. Keywords: Extreme environment, Soda lake, Sediment, Haloalkaliphilic, Gram-positive, Firmicutes Introduction genome of a haloalkaliphilic Gram-positive sulfur dispro- Soda lakes are formed in environments where high rates portionator within the phylum Firmicutes: Dethiobacter of evaporation lead to the accumulation of soluble carbon- alkaliphilus AHT1T. ate salts due to the lack of dissolved divalent cations. Con- sequently, soda lakes are defined by their high salinity and Organism information stable highly alkaline pH conditions, making them dually Classification and features extreme environments. Soda lakes occur throughout the The haloalkaliphilic anaerobe D. alkaliphilus AHT1T American, European, African, Asian and Australian conti- was isolated from hypersaline soda lake sediments in nents and host a wide variety of Archaea and Bacteria, northeastern Mongolia [10]. -
Microbial Activity in Bentonite Buffers. Literature Study
NOL CH OG E Y T • • R E E C S N E E A I 20 R C C S H • S H N I G O I H S L I I V G • H S T Microbial activity in bentonite buffers Literature study Marjaana Rättö | Merja Itävaara VTT TECHNOLOGY 20 Microbial activity in bentonite buffers Literature study Marjaana Rättö & Merja Itävaara ISBN 978-951-38-7833-7 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2012 JULKAISIJA – UTGIVARE – PUBLISHER VTT PL 1000 (Vuorimiehentie 5, Espoo) 02044 VTT Puh. 020 722 111, faksi 020 722 4374 VTT PB 1000 (Bergsmansvägen 5, Esbo) FI-2044 VTT Tfn +358 20 722 111, telefax +358 20 722 4374 VTT Technical Research Centre of Finland P.O. Box 1000 (Vuorimiehentie 5, Espoo) FI-02044 VTT, Finland Tel. +358 20 722 111, fax + 358 20 722 4374 2 Microbial activity in bentonite buffers Literature study Marjaana Rättö & Merja Itävaara. Espoo 2012. VTT Technology 20. 30 p. Abstract The proposed disposal concept for high-level radioactive wastes involves storing the wastes underground in copper-iron containers embedded in buffer material of compacted bentonite. Hydrogen sulphide production by sulphate-reducing prokar- yotes is a potential mechanism that could cause corrosion of waste containers in repository conditions. The prevailing conditions in compacted bentonite buffer will be harsh. The swelling pressure is 7–8 MPa, the amount of free water is low and the average pore and pore throat di ameters are small. This literature study aims to assess the potential of microbial activity in bentonite buffers. -
Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations. -
Microbiology of Sulfate-Reducing Passive Treatment Systems1
MICROBIOLOGY OF SULFATE-REDUCING PASSIVE TREATMENT SYSTEMS1 Amy Pruden2, Luciana P. Pereyra, Sage R. Hiibel, Laura Y. Inman, Nella Kashani, Kenneth F. Reardon, and David Reisman Little is known about the microbiology of passive mine drainage treatment systems, such as sulfate-reducing permeable reactive zones (SR-PRZs). We have recently developed a suite of molecular biology tools in our laboratory for characterizing the microbial communities present in SR-PRZs. In this study our suite of tools is used to characterize two different field bioreactors: Peerless Jenny King and Luttrell. Both bioreactors are located near the Ten Mile Creek Basin near Helena, MT, and both employ a compost-based substrate to promote the growth of sulfate-reducing bacteria (SRB) for production of sulfides and precipitation of metals. In summer, 2005, the reactors were sampled at multiple locations and with depth. DNA was extracted from the compost material and followed by cloning of polymerase chain reaction (PCR) amplified 16S rRNA genes, restriction digest screening, and DNA sequencing to provide insight into the overall composition of the microbial communities. To directly examine the SRB populations, a gene specific to SRB, apsA, was PCR-amplified, cloned, and sequenced. This revealed that Desulfovibrio spp. were prevalent in both Luttrell and Peerless Jenny King. At Peerless Jenny King, one Desulfovibrio spp. found was noted to be particularly aerotolerant. This analysis also revealed that Thiobacillus denitrificans were common at Peerless Jenny King. This is an organism that oxidizes sulfides in the presence of nitrate, which is undesirable for biozone function. In order to quantify SRB, quantitative real-time PCR (Q-PCR) was used targeting two specific groups of SRB, Desulfovibrio and Desulfobacteria. -
Desulfotomaculum Acetoxidans Type Strain (5575)
Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575). Permalink https://escholarship.org/uc/item/53z4r149 Journal Standards in genomic sciences, 1(3) ISSN 1944-3277 Authors Spring, Stefan Lapidus, Alla Schröder, Maren et al. Publication Date 2009-11-22 DOI 10.4056/sigs.39508 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2009) 1: 242-253 DOI:10.4056/sigs.39508 Complete genome sequence of Desulfotomaculum acetox- idans type strain (5575T) Stefan Spring1, Alla Lapidus2, Maren Schröder1, Dorothea Gleim1, David Sims3, Linda Meincke3, Tijana Glavina Del Rio2, Hope Tice2, Alex Copeland2, Jan-Fang Cheng2, Susan Lucas2, Feng Chen2, Matt Nolan2, David Bruce2,3, Lynne Goodwin2,3, Sam Pitluck2, Natalia Ivanova2, Konstantinos Mavromatis2, Natalia Mikhailova2, Amrita Pati2, Amy Chen4, Krish- na Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Patrick Chain2,6, Elizabeth Saunders2,3, Thomas Brettin2,3, John C. Detter2,3, Markus Göker1, Jim Bristow2, Jonathan A. Eisen2,7, Victor Markowitz4, Philip Hugenholtz2, Nikos C Kyr- pides2, Hans-Peter Klenk1*, and Cliff Han2,3 1 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Labora- tory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 Lawrence Livermore National Laboratory, Livermore, California, USA 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: sulfate-reducer, hydrogen sulfide, piggery waste, mesophile, motile, sporulating, obligate anaerobic, Peptococcaceae, Clostridiales, Firmicutes. -
Scientific Highlight April 2010
Scientific Highlight April 2010 co-ordinated with the Director of the Institute Institute Institute of Groundwater Ecology PSP-Element: G-504300-002 Person to contact for further enquiries: Dr. Tillmann Lüders, [email protected], Tel. 3687 Title of the Highlight: DNA-SIP identifies sulfate-reducing Clostridia as important toluene-degraders in tar-oil-contaminated aquifer sediment Keywords: Groundwater resources, ecosystem services, natural attenuation, BTEX, microbial key-players Central statement of the Highlight in one sentence: We have proven that uncultured members of the Clostridia, classically considered as fermenters and often also pathogenic microbes, are responsible for toluene degradation under sulfate-reduction in a contaminated aquifer. Text of the Highlight: Groundwater is the most important drinking water resources of our society. Still, global groundwater resources are constantly challenged by a multitude of contaminants such as aromatic hydrocarbons. Especially in anaerobic habitats, a large diversity of unrecognized microbes is hypothesized to be responsible for their degradation. However, the true identity of these populations and the factors that control their activities in situ are still poorly understood. Here, by using innovative 13C-labelling technologies for DNA, we have identified the most active sulfate-reducing toluene degraders within a diverse aquifer microbial community from a former Gasworks site in Germany. Surprisingly, the identified key-players were related to Desulfosporosinus spp. within the Peptococcaceae (Clostridia). Up to now, members of the Clostridia have not been recognized as important sulfate-reducing contaminant degraders, rather they are classically considered as fermenters and often also pathogenic microbes. Also, carbon flow from the contaminant into degraders was unexpectedly low, pointing toward high ratios of heterotrophic CO2-fixation during assimilation of acetyl-CoA 1 from toluene, which may represent an important and unrecognized ecophysiological constraint for these degraders. -
DNA-SIP Identifies Sulfate-Reducing Clostridia As Important Toluene Degraders in Tar-Oil-Contaminated Aquifer Sediment
The ISME Journal (2010) 4, 1314–1325 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 www.nature.com/ismej ORIGINAL ARTICLE DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment Christian Winderl, Holger Penning, Frederick von Netzer, Rainer U Meckenstock and Tillmann Lueders Institute of Groundwater Ecology, Helmholtz Zentrum Mu¨nchen—German Research Centre for Environmental Health, Neuherberg, Germany Global groundwater resources are constantly challenged by a multitude of contaminants such as aromatic hydrocarbons. Especially in anaerobic habitats, a large diversity of unrecognized microbial populations may be responsible for their degradation. Still, our present understanding of the respective microbiota and their ecophysiology is almost exclusively based on a small number of cultured organisms, mostly within the Proteobacteria. Here, by DNA-based stable isotope probing (SIP), we directly identified the most active sulfate-reducing toluene degraders in a diverse sedimentary microbial community originating from a tar-oil-contaminated aquifer at a former coal gasification plant. 13 13 On incubation of fresh sediments with C7-toluene, the production of both sulfide and CO2 was clearly coupled to the 13C-labeling of DNA of microbes related to Desulfosporosinus spp. within the Peptococcaceae (Clostridia). The screening of labeled DNA fractions also suggested a novel benzylsuccinate synthase alpha-subunit (bssA) sequence type previously only detected in the environment to be tentatively affiliated with these degraders. However, carbon flow from the contaminant into degrader DNA was only B50%, pointing toward high ratios of heterotrophic CO2-fixation during assimilation of acetyl-CoA originating from the contaminant by these degraders. -
Carbon Source-Dependent Expansion of the Genetic Code in Bacteria
Carbon source-dependent expansion of the genetic code in bacteria Laure Prata, Ilka U. Heinemanna, Hans R. Aernib, Jesse Rinehartb,c, Patrick O’Donoghuea,1, and Dieter Sölla,d,1 Departments of aMolecular Biophysics and Biochemistry, bCellular and Molecular Physiology, cSystems Biology Institute, and dChemistry, Yale University, New Haven, CT 06520 Contributed by Dieter Söll, October 25, 2012 (sent for review October 5, 2012) Despite the fact that the genetic code is known to vary between coli, and is sufficient to promote limited read-through of amber organisms in rare cases, it is believed that in the lifetime of a single codons (10, 11). A Methanosarcina acetivorans strain lacking cell the code is stable. We found Acetohalobium arabaticum cells tRNAPyl is viable when cells are grown on methanol as a carbon grown on pyruvate genetically encode 20 amino acids, but in the source, but detrimental for growth on methylamines (12). This presence of trimethylamine (TMA), A. arabaticum dynamically led to the initial assumption that Pyl was solely required in the expands its genetic code to 21 amino acids including pyrrolysine catalytic active site of methylamine methyltransferases that are (Pyl). A. arabaticum is the only known organism that modulates highly up-regulated on methylamines and repressed on methanol the size of its genetic code in response to its environment and (13, 14). We demonstrated, however, that Pyl can be incorporated energy source. The gene cassette pylTSBCD, required to biosynthe- in tRNAHis guanylyltransferase (Thg1), an enzyme that is not in- size and genetically encode UAG codons as Pyl, is present in the volved in methylamine metabolism, and interestingly, Pyl does not genomes of 24 anaerobic archaea and bacteria.