LD5655.V856 1987.C666.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
DESIGN AND C.HARACTERrZA'.rION OF ZEOLITE SUPPORTED COBALT CARBONYL CATALYSTS by Melissa Clare Connaway Dissertation sul::xnitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulf illroent of the requirements for the degree of OOCTOR OP PHILOSOPKY in Chemistry APPROVED: a. E. Hanson, Chairman J. G. Dillard J. M. Tan'i?o M.. E. Davis July, 1987 Blacksburg, Virginia DES!G~ AND CHARACTERIZATION OF ZEOLITE SUPPORTED COBALT CARBONYL CATALYSTS by Melissa Clare Connaway Comlni ttee Chairman: Brian E. Hanson Chemistry (ABSTRACT) Transition metal compounds such as co2 (C0) 8 have often been used to catalyze variuus organic reactions. Severe difficulties may be ancountered when atte1npts are made to recover and separate the soluble ~atalysts. A heterogeneous system consisting of co2 (C0) 8 impregnated on zeolites with faujasitic structure has been designed and investigated using a variety of techniques. In situ FTIR spectroscopy and carbon monoxide evolution were used to identify the major products generated, namely co4 (C0) 12 and Co(C0) 4 • Disproportionation may be induced thus forming Co(C0) 4 and an associated cation from the supported subcarbonyls by additi.on o.t various ligands such as methanol. The location of the supported cobalt carbonyls is determined by their reactivity toward various pnosphi.1es wi.tn various kineti.c diameters. rhe materials prepared in chis manner were found to be active in cat.ilyzing tae metha11ol carbonylation reaction and following thermolysis w~re also found to be active Fischer-Tropsch catalysts. Major products observed in the carbunylaciJn of methanol were methyl acetate and an acetaldehydd dimetnyl aceta1. The supported cobalt catalyst displays greater activity than ~o 2 (C0) 8 in solution for the carbonylation cdacti.011 wnen conducte-i und~r similar conditions. In the Fischer- Tropsch proce~s, selectivity is seen for the production of linear, short-ch~in htdr~carb~~d. ACKNOWLEDGEMEN·rs l am grateful to my research adviser, Dr. Brian E. Hanson, for his guidance, patience and encouragement during the course of this project. l would also like to thank Dr. Mark Davis for his general knowledge and contribution to this w.)rk. Funding froin the NatiJnal Science Foundation and a tuition waiver from the chemistry iepartment of VPI & SU are gratefully acknowledged. A very special appre~iation must be awarded to my parents for their love, faich and support. iv. TA.SLE OF CON·rENl'S ~HAPTER I. iNTROUUCTION ••••••••••••••••••••••••••••••••••••••••••• l 1.1 IJ~ENT o~ Td£~rs ••••••••••••••••••••••••••••••••••••••••• l 1.2 ZEOLITES ••••••••••••••••••••••••••••••••••••••••••••••••• 2 1.3 AOOlTION OF T.{ANSITION METALS Tu ZEOLITES •••••••••••••••• 5 1.4 METHANOL CARBONYLATION ••••••••••••••••••••••••••••••••••• 6 1.5 FISCHER-TROPSCH SYNTHESIS •••••••••••••••••••••••••••••••• 12 CHAPTER LI. EXPERIMEN'rAL .......................................... 18 2.1 ZEOLITE PREPARAl'ION ••••••••••••••••••••••••••••••••••••• • 18 2.2 ADDITION OF COBALT CARBONYL COMPOUNDS TO SUPPORT ••••••••• 20 2.3 GAS EVOLUTION ........................................... 21 2.4 GAS AOSO RPT I ON ••••••••••••••••••••••••••••••••••••••• • •• • 22 2.5 IN SITU I~FRARED SPECTROSCOPY ··•·•••••••••••••••••••••••• 23 2.6 XPS, X-RAY POWDER JIFFRACTION AND SEM •••••••••••••••••••• 25 2.7 METriANOL CARdOt-lYLATION ••••••••••••••••••••••••••••••••••• 25 2.8 FISCHER-TROPSCH SYNTHESIS •••••••••••••••••••••••••••••••• 26 CHAPTER III. !Ji SITU IR SPECTROSCOPY AND GAS EVOLUTION STUDIES OF INTRAZEOLITE COBALT CARBONYLS •••••••••••••••••••••••• 29 3.1 INrRODUCTION AND LITERATURE SURVEY ON IR SPECTROSCOPY JF SUPPORTED COBALT CARBONYLS •••••••••••••••••••••••••••• 27 3. 2 ADSORPTION OF BL~UCLEAR AND TETRANUCLEAR COBALT CARBONYLS uN NaY AND NaX ZEOLITES •••••••••••••••••••••••••••••••••• 29 3.3 Co2 (C0) 8 SUPPORTED ON HY ZEOLITE ••••••••••••••••••••••••• 38 3.4 SUPPORTED COBALT CARBONYLS REACTED WITH PHOSPHINES ••••••• 43 3.5 SUPPORTED COBALT CARBONYLS REACTED WITH VARIOUS LIGANDS •• 51 3.6 THERMOLYSIS OF SUPPORTED COBALT CARBONYL COMPLEXES ••••••• 63 3.7 CARBON MONOXIDE EVOLUTION •••••••••••••••••••••••••••••••• 64 3.8 DISCUSSION OF INFRARED SPECTROSCOPY AND CO EVOLUTION RESULTS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 67 CHAPTER IV. ZEOLITE SUPPORTED COBALT CARSONYLS AS A CATALYST FOR METHANO.L CARBONYLA'rION • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 7 4 4.1 INTRODUCTION AND LITERATURE SURVEY ON METHANOL CARSONYLA'.I' I ON • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 7 4 4.2 METHANOL CARBONYLATION CONDUCTED IN A BATCH REACTOR •••••• 75 4.3 DI~CUSSION OF METHANOL CARBONYLATION RESULTS•••••••••••••• 79 CHAPTER V. ZEOL!TE SUPPORTED COBALT AS A CATALYST FOR FISCHER-TRuPSCH SYNTHESIS •••••••••••••••••••••••••••••• 82 5. l. LNTRODUC'UO~~ AND LITERATURE SURVEY OF COBALT CATALYZED FI3CHEK-TRUPSCH SYNTHESIS ••••••••••••••••••••••••••••••• 82 v. 5.2. CHl\R.ACTERIZA·rroN BY GAS EVOLUTION AND GAS ADSORPTION •••• 83 5.3. CHARACTERIZATION BY X-RAY POWDER DIFFRACTION, SCANNING ELECTION MICROSCOPY AND X-RAY PHOTOELECTRON SPECTROSCOPY. 84 5.4. FISHER-TROPSCH SYNTHESIS CONDUCTED IN A BATCH REACTOR ••• 88 5.5. FISCHER-TROPSCH SYNTHESIS CONDUCTED IN A DIFFERENTIAL REACTOR ••••••••••••••••••••••••• ~ • • • • • • • • • • • • • • • • • • • • • • • 91 5.6 DISCUS3ION OF FISCHER-TROPSCH RESULTS ••••••••••••••••••• 94 C.t:IAPTER VI. CONCLUSIONS . ......................................... 101 tmFERENCES • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • l 0 4 APPENDIX I. GAS FLOW SYSTEM••••••••••••••••••••••••••••••••••••••• 109 VI TA . • . • . • • • • . • • . • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 112 vi. LIS'r OF FIGuRES Figure 1.1. Framework structure of zeolites X and Y. (Adapted fro1n rdf.6.) •..••••••...•••.•••••.•.•••••••••••••••• 4 Figure 1.2. Structure of co2 (C0) 8 (adapted from ref. 93) •••••••• 7 Figure 1.3. Proposed reaction mechanism for Rh-catalyzed methanol carbonylation. (Adapted from ref.8) •••••••••••••••• 11 Figure 1.4. Proposed hydr~xyl carbene reaction mechanism for the Fischer-Tropsch synthesis. (Adapted from ref. 21) 16 Figure 1.5. Proposed CO insertion reaction mechanism for the Fischer-Tropsch synthesis. (Adapted from ref. 21) •• 17 Figure 2.1. Glass reaction vessel for use on gas flow system •••• 19 Figure 2.2. In situ IR cell. ····•••••••••••••••••••••••••••••••• 24 Figure 2.3. digh pressure flow system used in conducting Pischer- Tropsch synthesis. •••••••••••••••••••••••••••••••••• 28 Figure 3.1. Adsorption of co2 CC0) 8 on NaY zeolite1 (a) i1nmediately aftdr i1runersion of pellet into co2 (CO) 8; pencane solution1 (b) 3 min after immersion1 (c) 6 .nin after i.11mersion1 ( d) 9 min after immersion; (el 15 min. aiter immersion ···········•••••••••••••••31 Figure 3.2. Adsorption of co2(C0) 8 on NaX zeolite1 (a) immediately after iaunersion of pellet into Co 2 (C0) 8/pentane solution; (b) 3 min after iinmersion; (cl 6 min aftar immersion 33 Figure 3.3. IR spectra obtained by four consecutive immersions of NaY pellet into co4 (C0) 12;pentane solution1 (1) first immersion, (2) second immersion, (3) third immersion, (4) fourth immersion ••••••••••••••••••••• 35 Figure 3.4. Adsorption of co4 cco> 12 on NaX1 top spectrum is immediately after immersion of pellet into solution, lower spectrum is 3 min after immersion ••••••••••••• 39 vii. Figure 3.5. co2 (C0) 8 supported on HY zeolite; (a) HY pellet; (b) immediately after immersion of pellet into co2 (C0) 8/pentane solution; (c) 3 min after immersion; (d) 6 min after immersion ••••••••••••••••••••••••••• 42 Figure 3.6. Triethylphosphine adsorbed on NaY followed by addition of Co 2 (C0) 8 • ·••••••••••••••••••••••••••••••••••••••• 45 Figure 3.7. co2 cco) 8 adsorbed on NaY; (a) immediately after immersion of the pellet into solution (b) 2.5 min after immersion 46 Figure 3.8. Addition of P(Et) 3 to co2 (C0) 8 adsorbed on NaY shown in trace (a); (b) 3 min after additon of P(Et) 3 • ••••••••••••••••••••••••••••••••••••••••••••• 47 Figure 3.9. co4 (COJ 12 adsorbed on NaY ••••••••••••••••••••••••••• 49 Figure 3.10. Addition of P(t-Bul 3 to NaY wafer with adsorbed co4 ccoJ 12 shown in trace (l); (2) after i.mmersion into ~o 4 (COJ 12 solution; (3) after second immersion; (4a) after addition of co4 (COJ 12 solution by syringe; (4b) 5 min after addition of eo 4 ccoi 12 from syringe ••••• 50 Figure 3.11. co2 (COJ 8 adsorbed on NaY; (a) immediately after immersion of the pellet into co2 (C0) 8 solution1 (b) 2.5 min after immersion; (c) s·min after immersion; (d) 7.5 min after immersion 52 Figure 3.12. co2 (COJ 8 adsorbed on NaY; (a) 10 min after immersion of the pellet into solution (trace a); (b) addition of P(t-Bu> 3 from syringe onto pellet; (c) 5 min after addition of P(t-Bu) 3 ••••••••••••••••••••••••• 53 Figure 3.13. co2 (C0) 8 supported on NaY 30 min after immersion of the pellet into solution (a) and addition of 1netnan0l bt syringe onto pellet (b) ................ 54 viii. Figure 3.lA. Methanol adsorbed on NaY (a), immersion of pellet into co2 cco> 8 solution (b) and l.S min after immersion of p~llet (c) ············••••••••••••••••56 Figure 3.lS. co2 cco> 8 supported on NaY (a) and after addition of water by syringe (b) •••••••••••••••••••••••••••• S8 Figure 3.16. Water adsorbed on NaY (a), (b) addtion of co2 cco) 8 solution by syringe and (c)