Basic Research

Total Page:16

File Type:pdf, Size:1020Kb

Basic Research Basic research The frontoparietal network: function, electrophysiology, and importance of individual precision mapping Scott Marek, PhD; Nico U. F. Dosenbach, MD, PhD Introduction he human brain is unique among other species in its abilityT to accurately and rapidly learn new concepts and switch between states, while maintaining complex rule sets. We engage in countless goal-directed tasks throughout a given day, adopting task sets that flexibly The frontoparietal network is critical for our ability to configure information processing in response to chang- coordinate behavior in a rapid, accurate, and flexible ing task demands. In cognitive psychology and neuro- goal-driven manner. In this review, we outline support science, this process of volitional goal-driven behavior for the framing of the frontoparietal network as a dis- is referred to as cognitive control. Cognitive control is tinct control network, in part functioning to flexibly in- not executed by a single brain region or single brain teract with and alter other functional brain networks. network, but rather by several largely non-overlapping This network coordination likely occurs in a 4 Hz to13 brain networks, each consisting of a relatively large set Hz θ/α rhythm, both during resting state and task state. of anatomically distributed regions, including the fron- Precision mapping of individual human brains has re- toparietal, cingulo-opercular, and salience networks. vealed that the functional topography of the frontopa- There is now abundant evidence that these networks rietal network is variable between individuals, under- are anatomically separate from downstream process- scoring the notion that group-average studies of the ing or attention networks, both during task states and frontoparietal network may be obscuring important typical and atypical features. Many forms of psychopa- Keywords: cognitive control; cognitive flexibility; frontoparietal; lateral prefrontal cortex; intraparietal sulcus; psychopathology thology implicate the frontoparietal network, such as schizophrenia and attention-deficit/hyperactivity dis- Author affiliations: Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA (Scott Marek, Nico U. F. Dosen- order. Given the interindividual variability in frontopa- bach); Program in Occupational Therapy, Washington University School of rietal network organization, clinical studies will likely Medicine, St Louis, Missouri, USA (Nico U. F. Dosenbach); Department of benefit greatly from acquiring more individual subject Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA (Nico U. F. Dosenbach) data to accurately characterize resting-state networks compromised in psychopathology. Address for correspondence: Scott Marek, Postdoctoral Research Scholar, Washington University in St. Louis, Department of Neurology, St. Louis, © 2018, AICH – Servier Group Dialogues Clin Neurosci. 2018;20:133-140. MO 63110, USA (email: [email protected]) Copyright © 2018 AICH – Servier Group. All rights reserved 133 www.dialogues-cns.org Basic research the resting state. Each network plays a unique role in prefrontal cortex, which in turn exert top-down control. cognitive control, including its implementation, main- Since this time, the conflict monitoring hypothesis has tenance, and updating. Networks related to attention vs evolved, prescribing a role of dorsal anterior cingulate cognitive control map onto those outlined by Petersen in signaling the expected value of control.8 Working and Posner,1,2 with the dorsal and ventral attention net- closely in conjunction with this region and comprising works supporting orienting and the frontoparietal and the core of the brain’s salience network, the anterior cingulo-opercular networks supporting cognitive con- insula is thought to detect salient features for additional trol. For the duration of this review, we will be focused processing and is thought to act as a switchboard to di- on the control networks, with emphasis on the fronto- rect other brain networks.9-11 parietal control network. Although the conflict-monitoring hypothesis as- We begin our review by summarizing evidence for cribes the anterior cingulate a central role in control, the frontoparietal network as distinct from other con- a separate dual network’s view holds that cognitive trol and attention networks, including its privileged role control is supported by multiple, anatomically distrib- as a flexible hub of cognitive control. We then move into uted brain networks.12 This model is the result of stud- a discussion of the oscillations underlying frontopari- ies specifically aiming to delineate distinct control sig- etal network interactions, during both resting and task nals. Though the detection of salient stimuli and conflict states. Following this, we will discuss the importance of resolution are essential features of cognitive control, densely sampling individual subjects. There is compel- humans also need to maintain and adapt control. Thus, ling evidence that while core regions of the frontopari- there are three main signals related to cognitive control: etal network are present across individuals, critical vari- (i) a transient signal resulting from the realization of the ants in this network’s topography exist. We conclude by need to instantiate control; (ii) a sustained signal sup- briefly reviewing evidence for frontoparietal dysfunc- porting the maintenance of control; and (iii) a transient tion in several forms of psychopathology that emerge signal supporting performance feedback. An early at- during adolescence, a time when the frontoparietal tempt to disentangle brain regions supporting different network is refining many of its interactions with other modes of control was executed by Braver and colleagues brain networks. Given the anatomical heterogeneity of using a mixed block/event related design in functional the frontoparietal network across individuals, we argue magnetic resonance imaging (fMRI).13 Results from a complimentary shift towards densely sampling indi- this study concluded that the anterior prefrontal cortex vidual subjects in both normative and diseased states is was most reliably activated during the maintenance of of paramount importance to understanding the fronto- control, while the superior parietal lobes were involved parietal network in typical and atypical cohorts. in transient control. Several years later, Dosenbach and colleagues executed a cross-studies analysis on 10 Evidence for parallel, segregated mixed block/event-related fMRI studies to tease apart control networks regions contributing to the main signals contributing to cognitive control.12 These tasks included visual and The original focus on the anatomical substrate of cog- auditory stimuli, with many different decision criteria, nitive control was within the anterior cingulate cortex such as semantic, timing, and similarity judgments. They and to a lesser extent the anterior insula. This is because discovered a set of regions including the anterior pre- the anterior cingulate demonstrates reliable activation frontal, anterior insular, and anterior cingulate cortices in response to many forms of control, including, but that showed preferable activation for the maintenance not limited to, task switching, novelty detection, focal of control, whereas the bilateral intraparietal sulcus and attention, and error commission.3-6 This early work led lateral prefrontal cortex showed preferable activation Botvinick and colleagues to conclude that the anterior for task-set initiation. Lastly, performance feedback cingulate facilitates outcome monitoring by evaluating seemed to be supported by the inferior parietal lobe, the result of an individual’s actions, and facilitating the dorsolateral prefrontal cortex, and lateral cerebellum.12 resolution of conflict during task (ie, conflict monitor- During the mid-2000s, fMRI analysis was shifting ing).7 Thus, it was proposed that the anterior cingulate from a focus on regional contributions to brain func- acts to alert regulatory regions, such as the dorsolateral tion to a broader network-level focus. With respect to 134 Frontoparietal control network - Marek and Dosenbach Dialogues in Clinical Neuroscience - Vol 20 . No. 2 . 2018 this network-level approach, a key observation is that lated α-band activity in downstream visual association co-fluctuations during the resting-state largely recapit- cortices, whereas there was no evidence for top-down ulate patterns of activation during task.14 Capitalizing modulation of the visual network by the cingulo-oper- on this observation, Dosenbach and colleagues imple- cular network, supporting a role for the frontoparietal mented resting-state fMRI to delineate a whole brain network in bias sensory information in processing net- network’s view of the brain’s control architecture.15,16 works.20,21 During the resting state, two largely parallel control networks emerged. These two distinct networks were Role of the frontoparietal network: coined the frontoparietal and cingulo-opercular net- a flexible hub for cognitive control works. The original putative role of the cingulo-opercu- lar network was in the flexible control of goal-directed Humans are unique and quite remarkable in their de- behavior through the stable implementation of task gree of flexibility and speed when instantiating cogni- sets in downstream sensorimotor processors across tri- tive control. How the human brain is capable of doing als, while control
Recommended publications
  • Accelerated Aging of Functional Brain Networks Supporting Cognitive Function in Psychotic Disorders
    Biological Psychiatry: Celebrating 50 Years Archival Report Accelerated Aging of Functional Brain Networks Supporting Cognitive Function in Psychotic Disorders Julia M. Sheffield, Baxter P. Rogers, Jennifer U. Blackford, Stephan Heckers, and Neil D. Woodward ABSTRACT BACKGROUND: Across networks, connectivity within the frontoparietal network (FPN) and cingulo-opercular network (CON) exhibits reductions earliest during healthy aging, contributing to cognitive impairment. Individuals with psychotic disorders demonstrate evidence of accelerated aging across multiple biological systems. By leveraging a large sample of patients with psychosis from early to chronic illness stages, this study sought to determine whether the CON and FPN exhibit evidence of accelerated aging in psychotic disorders, confirm associations between network efficiency and cognition, and determine whether reduced network efficiency is observed in early-stage psychosis. METHODS: Resting-state functional magnetic resonance imaging and cognitive data were obtained on 240 patients with psychotic disorder and 178 healthy control participants (HCs). Global efficiency, a measure of functional inte- gration, was calculated for the CON, FPN, subcortical network, and visual network. Associations with age and cognition were assessed and compared between groups. RESULTS: Consistent with accelerated aging, significant group by age interactions reflected significantly stronger relationships between efficiency and age in patients with psychosis than in HCs for both the CON (psychosis: r = 2.37; HC: r = 2.16) and FPN (psychosis: r = 2.31; HC: r = 2.05). Accelerated aging was not observed in either the subcortical or visual network, suggesting specificity for cognitive networks that decline earliest in healthy aging. Replicating prior findings, efficiency of both the CON and FPN correlated with cognitive function across all partici- pants (rs .
    [Show full text]
  • Mind‐Wandering While Reading: Attentional Decoupling, Mindless Reading and the Cascade Model of Inattention
    This is a repository copy of Distinct individual differences in default mode network connectivity relate to off-task thought and text memory during reading. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/152606/ Version: Accepted Version Article: Zhang, Meichao, Savill, Nicola, Margulies, Daniel S et al. (2 more authors) (Accepted: 2019) Distinct individual differences in default mode network connectivity relate to off-task thought and text memory during reading. Scientific Reports. ISSN 2045-2322 (In Press) Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative works on the same terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Distinct individual differences in default mode network connectivity relate to off-task thought and text memory during reading Meichao Zhang 1*, Nicola Savill 2, Daniel S. Margulies 3, Jonathan Smallwood 1, Elizabeth Jefferies 1 1 Department of Psychology, University of York, Heslington, York, UK, YO10 5DD 2 School of Psychological and Social Sciences, York St John University, York, UK, YO31 7EX 3 Frontlab, CNRS UMR 7225, Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France.
    [Show full text]
  • Development of Brain Functional Connectivity and Its Relation to Infant Sustained Attention in the Irsf T Year of Life Wanze Xie University of South Carolina
    University of South Carolina Scholar Commons Theses and Dissertations 2017 Development of Brain Functional Connectivity and Its Relation To Infant Sustained Attention In The irsF t Year Of Life Wanze Xie University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Experimental Analysis of Behavior Commons Recommended Citation Xie, W.(2017). Development of Brain Functional Connectivity and Its Relation To Infant Sustained Attention In The First Year Of Life. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/4374 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. DEVELOPMENT OF BRAIN FUNCTIONAL CONNECTIVITY AND ITS RELATION TO INFANT SUSTAINED ATTENTION IN THE FIRST YEAR OF LIFE by Wanze Xie Bachelor of Science East Tennessee State University, 2012 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Experimental Psychology College of Arts and Sciences University of South Carolina 2017 Accepted by: John E. Richards, Major Professor Jessica Green, Committee Member Jeff Schatz, Committee Member Troy Herter, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Wanze Xie, 2017 All Rights Reserved. ii DEDICATION This dissertation is dedicated to my family, Xiuping Lyu, Kecheng Xu, and Penny Song for their support in the past five years. The support from my parents, especially the support and soul massage from my mother, Xiuping Lyu, prevents me from quitting the program.
    [Show full text]
  • The Surprising Role of the Default Mode Network T
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.18.101758; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The Surprising Role of the Default Mode Network T. Brandman1*, R. Malach1, E. Simony1,2. 1Department of Neurobiology and the Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science. 2Faculty of Engineering, Holon Institute of Technology. *Correspondence to: [email protected] Abstract: The default mode network (DMN) is a group of high-order brain regions recently implicated in processing external naturalistic events, yet it remains unclear what cognitive function it serves. Here we identified the cognitive states predictive of DMN fMRI coactivation. Particularly, we developed a state-fluctuation pattern analysis, matching network coactivations across a short movie with retrospective behavioral sampling of movie events. Network coactivation was selectively correlated with the state of surprise across movie events, compared to all other cognitive states (e.g. emotion, vividness). The effect was exhibited in the DMN, but not dorsal attention or visual networks. Furthermore, surprise was found to mediate DMN coactivations with hippocampus and nucleus accumbens. These unexpected findings point to the DMN as a major hub in high-level prediction-error representations. The default mode network (DMN) is a group of high-order brain regions, so-called for its decreased activation during tasks of high attentional demand, relative to the high baseline activation of the DMN at rest (1-3).
    [Show full text]
  • Glutamate Connectivity Associations Converge Upon the Salience Network in Schizophrenia and Healthy Controls Robert A
    McCutcheon et al. Translational Psychiatry (2021) 11:322 https://doi.org/10.1038/s41398-021-01455-y Translational Psychiatry ARTICLE Open Access Glutamate connectivity associations converge upon the salience network in schizophrenia and healthy controls Robert A. McCutcheon 1,2,3,4, Toby Pillinger 1,2,3,4, Maria Rogdaki 1,2,3,4, Juan Bustillo5,6 and Oliver D. Howes1,2,3,4 Abstract Alterations in cortical inter-areal functional connectivity, and aberrant glutamatergic signalling are implicated in the pathophysiology of schizophrenia but the relationship between the two is unclear. We used multimodal imaging to identify areas of convergence between the two systems. Two separate cohorts were examined, comprising 195 participants in total. All participants received resting state functional MRI to characterise functional brain networks and proton magnetic resonance spectroscopy (1H-MRS) to measure glutamate concentrations in the frontal cortex. Study A investigated the relationship between frontal cortex glutamate concentrations and network connectivity in individuals with schizophrenia and healthy controls. Study B also used 1H-MRS, and scanned individuals with schizophrenia and healthy controls before and after a challenge with the glutamatergic modulator riluzole, to investigate the relationship between changes in glutamate concentrations and changes in network connectivity. In both studies the network based statistic was used to probe associations between glutamate and connectivity, and glutamate associated networks were then characterised in terms of their overlap with canonical functional networks. Study A involved 76 individuals with schizophrenia and 82 controls, and identified a functional network negatively associated with glutamate concentrations that was concentrated within the salience network (p < 0.05) and did not 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; differ significantly between patients and controls (p > 0.85).
    [Show full text]
  • The Salience Network Contributes to an Individual's Fluid Reasoning Capacity
    G Model BBR-7508; No. of Pages 7 ARTICLE IN PRESS Behavioural Brain Research xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Behavioural Brain Research j ournal homepage: www.elsevier.com/locate/bbr Research report The salience network contributes to an individual’s fluid reasoning capacity a a a b a,∗ a,c,∗∗ Zhina Yuan , Wen Qin , Dawei Wang , Tianzi Jiang , Yunting Zhang , Chunshui Yu a Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China b LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China c School of Medical Imaging, Tianjin Medical University, Tianjin, China a r t i c l e i n f o a b s t r a c t Article history: Fluid reasoning is the ability to think flexibly and logically, analyze novel problems and identify the rela- Received 18 October 2011 tionships that underpin these problems independent of acquired knowledge. Although many functional Received in revised form 14 January 2012 imaging studies have investigated brain activation during fluid reasoning tasks, the neural correlates of Accepted 17 January 2012 fluid reasoning remain elusive. In the present study, we aimed to uncover the neural correlates of fluid Available online xxx reasoning by analyzing correlations between Raven’s Standard Progressive Matrices (RSPM), an effective measure of fluid reasoning, and measures of regional gray matter volume (GMV) and regional homogene- Keywords: ity (ReHo) in a voxel-wise manner throughout the whole brain in 297 healthy young adults. The most Fluid reasoning important finding was that RSPM scores were positively correlated with both GMV and ReHo values in Raven’s Progressive Matrices brain areas that belong to the salience network, including the dorsal anterior cingulate cortex and the Gray matter volume Voxel-based morphometry fronto-insular cortex.
    [Show full text]
  • Childhood Trauma History Is Linked to Abnormal Brain Connectivity in Major Depression
    Childhood trauma history is linked to abnormal brain connectivity in major depression Meichen Yua,b, Kristin A. Linna,c, Russell T. Shinoharaa,c, Desmond J. Oathesa,b, Philip A. Cooka,d, Romain Duprata,b, Tyler M. Mooree, Maria A. Oquendob, Mary L. Phillipsf, Melvin McInnisg, Maurizio Favah, Madhukar H. Trivedii, Patrick McGrathj, Ramin Parseyk, Myrna M. Weissmanj, and Yvette I. Shelinea,b,d,l,1 aCenter for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; bDepartment of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; cDepartment of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; dDepartment of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; eBrain and Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; fDepartment of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; gDepartment of Psychiatry, University of Michigan School of Medicine, Ann Arbor, MI 48109; hDepartment of Psychiatry, Massachusetts General Hospital, Boston, MA 02114; iCenter for Depression Research and Clinical Care, Peter O'Donnell Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; jDepartment of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY 10032;
    [Show full text]
  • Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: a Central Pathway in Psychiatric Disease and Treatment
    REVIEW published: 27 December 2016 doi: 10.3389/fnsys.2016.00104 Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment Sarah K. Peters 1, Katharine Dunlop 1 and Jonathan Downar 1,2,3,4* 1Institute of Medical Science, University of Toronto, Toronto, ON, Canada, 2Krembil Research Institute, University Health Network, Toronto, ON, Canada, 3Department of Psychiatry, University of Toronto, Toronto, ON, Canada, 4MRI-Guided rTMS Clinic, University Health Network, Toronto, ON, Canada The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel- based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network’s associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. Edited by: The SN’s cortico-striato-thalamo-cortical loop increasingly appears to be central to Avishek Adhikari, mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses Stanford University, USA and their available treatments.
    [Show full text]
  • Resting-State Fmri Reveals Network Disintegration During Delirium T ⁎ Simone J.T
    NeuroImage: Clinical 20 (2018) 35–41 Contents lists available at ScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Resting-state fMRI reveals network disintegration during delirium T ⁎ Simone J.T. van Montforta, , Edwin van Dellenb,c, Aletta M.R. van den Boscha,d, Willem M. Ottee,f, Maya J.L. Schutteb, Soo-Hee Choig, Tae-Sub Chungh, Sunghyon Kyeongi, Arjen J.C. Slootera, ⁎⁎ Jae-Jin Kimi, a Department of Intensive Care Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, The Netherlands b Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands c Melbourne Neuropsychiatry Center, Department of Psychiatry, University of Melbourne, Australia d Faculty of Science, University of Amsterdam, the Netherlands e Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, the Netherlands f Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, the Netherlands g Department of Psychiatry, Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea h Department of Radiology, Yonsei University Gangnam Severance Hospital, Seoul, Republic of Korea i Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. ARTICLE INFO ABSTRACT Keywords: Delirium is characterized by inattention and other cognitive deficits, symptoms that have been associated with Delirium disturbed interactions between remote brain regions. Recent EEG studies confirm that disturbed global network fMRI topology may underlie the syndrome, but lack an anatomical basis. The aim of this study was to increase our Resting-state understanding of the global organization of functional connectivity during delirium and to localize possible Brain networks alterations.
    [Show full text]
  • Electroencephalographic Resting-State Functional Connectivity of Benign Epilepsy with Centrotemporal Spikes
    JCN Open Access ORIGINAL ARTICLE pISSN 1738-6586 / eISSN 2005-5013 / J Clin Neurol 2019;15(2):211-220 / https://doi.org/10.3988/jcn.2019.15.2.211 Electroencephalographic Resting-State Functional Connectivity of Benign Epilepsy with Centrotemporal Spikes Hyun-Soo Choia* Background and Purpose We aimed to reveal resting-state functional connectivity char- Yoon Gi Chungb* c acteristics based on the spike-free waking electroencephalogram (EEG) of benign epilepsy Sun Ah Choi with centrotemporal spikes (BECTS) patients, which usually appears normal in routine visual d Soyeon Ahn inspection. c Hunmin Kim Methods Thirty BECTS patients and 30 disease-free and age- and sex-matched controls Sungroh Yoona were included. Eight-second EEG epochs without artifacts were sampled and then bandpass Hee Hwangc filtered into the delta, theta, lower alpha, upper alpha, and beta bands to construct the associa- Ki Joong Kime,f tion matrix. The weighted phase lag index (wPLI) was used as an association measure for EEG signals. The band-specific connectivity, which was represented as a matrix of wPLI values of a Department of Electrical and all edges, was compared for analyzing the connectivity itself. The global wPLI, characteristic Computer Engineering, path length (CPL), and mean clustering coefficient were compared. Seoul National University, Seoul, Korea Results The resting-state functional connectivity itself and the network topology differed in ‌bHealthcare ICT Research Center, the BECTS patients. For the lower-alpha-band and beta-band connectivity, edges that showed Seoul National University significant differences had consistently lower wPLI values compared to the disease-free con- Bundang Hospital, Seongnam, Korea c trols.
    [Show full text]
  • Resting-State Functional Connectivity and Scholastic Performance in Preadolescent Children: a Data-Driven Multivoxel Pattern Analysis (MVPA)
    Journal of Clinical Medicine Article Resting-State Functional Connectivity and Scholastic Performance in Preadolescent Children: A Data-Driven Multivoxel Pattern Analysis (MVPA) Daniel R. Westfall 1 , Sheeba A. Anteraper 1,2,3, Laura Chaddock-Heyman 4, Eric S. Drollette 5, Lauren B. Raine 1 , Susan Whitfield-Gabrieli 1,2, Arthur F. Kramer 1,4 and Charles H. Hillman 1,6,* 1 Department of Psychology, Northeastern University, Boston, MA 02115, USA; [email protected] (D.R.W.); [email protected] (S.A.A.); [email protected] (L.B.R.); s.whitfi[email protected] (S.W.-G.); [email protected] (A.F.K.) 2 Northeastern University Biomedical Imaging Center, Northeastern University, Boston, MA 02115, USA 3 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA 4 Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; [email protected] 5 Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; [email protected] 6 Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA * Correspondence: [email protected] Received: 17 August 2020; Accepted: 30 September 2020; Published: 2 October 2020 Abstract: Scholastic performance is the key metric by which schools measure student’s academic success, and it is important to understand the neural-correlates associated with greater scholastic performance. This study examines resting-state functional connectivity (RsFc) associated with scholastic performance (reading and mathematics) in preadolescent children (7–9 years) using an unbiased whole-brain connectome-wide multi-voxel pattern analysis (MVPA).
    [Show full text]
  • Changes in Extra-Striatal Functional Connectivity in Patients with Schizophrenia in a Psychotic Episode
    The British Journal of Psychiatry (2017) 210, 75–82. doi: 10.1192/bjp.bp.114.151928 Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode Henning Peters, Valentin Riedl, Andrei Manoliu, Martin Scherr, Dirk Schwertho¨ ffer, Claus Zimmer, Hans Fo¨ rstl, Josef Ba¨ uml, Christian Sorg* and Kathrin Koch* Background In patients with schizophrenia in a psychotic episode, with right anterior insula and dorsal prefrontal cortex, intra-striatal intrinsic connectivity is increased in the putamen the ventral striatum with left anterior insula. Decreased but not ventral striatum. Furthermore, multimodal changes functional connectivity between putamen and right have been observed in the anterior insula that interact anterior insula was specifically associated with patients’ extensively with the putamen. hallucinations. Functional connectivity distinctiveness was impaired only for the putamen. Aims We hypothesised that during psychosis, putamen extra- Conclusions striatal functional connectivity is altered with both the Results indicate aberrant extra-striatal connectivity during anterior insula and areas normally connected with the psychosis and a relationship between reduced putamen–right ventral striatum (i.e. altered functional connectivity anterior insula connectivity and hallucinations. Data distinctiveness of putamen and ventral striatum). suggest that altered intrinsic connectivity links striatal and Method insular pathophysiology in psychosis. We acquired resting-state functional magnetic resonance
    [Show full text]