(12) United States Patent (10) Patent No.: US 8,905,588 B2 Krames Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,905,588 B2 Krames Et Al USOO8905588B2 (12) United States Patent (10) Patent No.: US 8,905,588 B2 Krames et al. (45) Date of Patent: *Dec. 9, 2014 (54) SYSTEMAND METHOD FOR PROVIDING USPC ........ 362/293; 362/84; 362/249.02; 362/231; COLOR LIGHT SOURCES IN PROXMITY TO 313/512; 313/502; 313/503; 257/98 PREDETERMINED WAVELENGTH (58) Field of Classification Search CONVERSION STRUCTURES USPC ............... 362/293, 84, 249.02, 231: 313/512, 313/502,503; 257/98 (71) Applicant: Soraa, Inc., Fremont, CA (US) See application file for complete search history. (72) Inventors: Michael Krames, Mountain View, CA (56) References Cited (US); Troy Trottier, San Jose, CA (US); Frank Steranka, San Jose, CA (US); U.S. PATENT DOCUMENTS William Houck, Fremont, CA (US); Arpan Chakraborty, Chandler, AZ 4,065,688 A 12/1977 Thornton (US) 4,066,868 A 1/1978 Witkin et al. (73) Assignee: Sorra, Inc., Fremont, CA (US) (Continued) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 CN 101009347 3, 1987 U.S.C. 154(b) by 0 days. CN 1538534 10, 2004 This patent is Subject to a terminal dis (Continued) claimer. OTHER PUBLICATIONS Abare, 'Cleaved and Etched Facet Nitride Laser Diodes, IEEE Jour (21) Appl. No.: 14/256,670 nal of Selected Topics in Quantum Electronics, vol. 4. No. 3, 1998, p. 505-509. (22) Filed: Apr. 18, 2014 (Continued) (65) Prior Publication Data Primary Examiner — Ismael Negron US 2014/O225137 A1 Aug. 14, 2014 Assistant Examiner — William N. Harris (74) Attorney, Agent, or Firm — Kilpatrick Townsend & Related U.S. Application Data Stockton LLP (63) Continuation of application No. 13/328,978, filed on (57) ABSTRACT Dec. 16, 2011, now Pat. No. 8,740,413, which is a An optical device includes a light source with at least two radiation Sources, and at least two layers of wavelength (Continued) modifying materials excited by the radiation Sources that emit radiation in at least two predetermined wavelengths. Embodi (51) Int. Cl. ments include a first plurality of n radiation sources config F2IV 9/00 (2006.01) ured to emit radiation at a first wavelength. The first plurality F2IV 9/16 (2006.01) of radiation sources are in proximity to a second plurality of F2IS 4/00 (2006.01) m of radiation sources configured to emit radiationata second F2/21/00 (2006.01) wavelength, the second wavelength being shorter than the HOI. I./62 (2006.01) first wavelength. The ratio between mand n is predetermined. HOI. 63/04 (2006.01) The disclosed optical device also comprises at least two HOIL 33/00 (2010.01) wavelength converting layers such that a first wavelength HOIL 27/5 (2006.01) converting layer is configured to absorb a portion of radiation HOIL 33/50 (2010.01) emitted by the second radiation Sources, and a second wave (52) U.S. Cl. length converting layer configured to absorb a portion of CPC ............ H0IL33/504 (2013.01); HOIL 27/156 radiation emitted by the second radiation sources. (2013.01) 20 Claims, 19 Drawing Sheets 400 US 8,905,588 B2 Page 2 Related U.S. Application Data 7,038,399 B2 5/2006 Lys et al. 7,053,413 B2 5/2006 D'Evelyn et al. continuation-in-part of application No. 13/019,897, 7,067,985 B2 6/2006 Adachi filed on Feb. 2, 2011, which is a continuation-in-part of 29:22, g39. R s al application No. 13/014,622, filed on Jan. 26, 2011. 7,083,302W wr. B2 8/2006 Chenuynn et et al. al. (60) Provisional application No. 61/424,562, filed on Dec. 7,095,056 B2 8/2006 Vitta et al. 7,113,658 B2 9, 2006 Ide et al. 17, 2010, provisional application No. 61/301,193, 7,128,849 B2 10/2006 Setlur et al. filed on Feb. 3, 2010, provisional application No. 7,148,515 B1 12/2006 Huang et al. 61/357,849, filed on Jun. 23, 2010. 7,173,384 B2 2, 2007 Plotz et al. 7,213,940 B1 5/2007 Van De Venet al. 7,220,324 B2 5/2007 Baker et al. (56) References Cited 7,233,831 B2 6/2007 Blackwell 7,252.408 B2 8, 2007 MaZZOchette et al. U.S. PATENT DOCUMENTS 7,253,446 B2 8, 2007 Sakuma et al. 4,318,058 A 3/1982 Mito et al. 7,285,7997,279,040 BfB2 10/2007 WangKim et al. 4,341,592 A 7, 1982 Shortes et al. 7.285,801 B2 10/2007 Eliashevich et al. 4,350,560 A 9/1982 Helgeland et al. 7.303,630 B2 12/2007 Motoki et al. 4,581,646 A 4, 1986 Kubodera 7.312,156 B2 12/2007 Granneman et al. 4,860,687 A 8/1989 Frilink 7.318,651 B2 1/2008 Chua et al. 4,870,045 A 9/1989 Gasper et al. 7.338.82s B2 3/2008 meret al. 4,911,102 A 3/1990 Manabe et al. 734 isso B2 3/2008 Erchak et al. 5,169,486 A 12/1992 Young et al. 7353.iss B2 4/2008 Lyseta 5,334.277 A 8, 1994 Nakamura 7.358,543 B2 4/2008 Chua et al. 5,527.417 A 6, 1996 Iida et al. 7,358,679 B2 4/2008 Lys et al. 5,607,899 A 3, 1997 Yoshida et al. T.390.359 B2 6/2008 Miyanaga etal 5,632,812 A 5/1997 Hirabayashi 7415281 B2 92008 Porchaetal 5,637,531 A 6, 1997 Porowski et al. 7,470,938K-1 B2 12/2008 Lee et al. 5,647,945 A 7, 1997 Matsuse et al. 7.483,466 B2 1/2009 Uchida et all 5,764,674 A 6, 1998 Hibbs-Brenner et al. 7489.44 B2 2/2009 Scheible et all 5,813,753 A 9, 1998 Vriens et al. 7.491984 B3 2.2009 Koikeet al. 5,821,555 A 10/1998 Saito et al. 7.550,305 B2 6/2009 Yamagata et al. 5,951,923 A 9, 1999 Horie et al. 7,560,981 B2 7/2009 Chao et al. 6,069,394 A 5, 2000 Hashimoto et al. 7,564,180 B2 7/2009 Brandes 6,072, 197 A 6, 2000 Horino et al. 7.598.04 B2 10, 2009 Teng etal 6,150,774 A 11/2000 Mueller et al. 7.622,742-- w B2 11/2009 Kim et al. 6,153,010 A 1 1/2000 Kiyoku et al. 7,691,658 B2 4/2010 Kaeding et al. 6,195.381 B1 2/2001 Botez et al. 7700,284 B2 5, 2010 Iza et all 6,335,771 B1 1/2002 Hiraishi 7.727.333 B2 62010 Habeletal. 6,379,985 B1 4/2002 Cervantes et al. 7.73357 B1 6, 2010 Li 6,413,627 B1 7/2002 Motoki et al. 7,737,457 B2 6, 2010 Kolodin et al. 6,451,157 B1 9, 2002 Hubacek 7,791,093 B2 9/2010 Basin et al. 6,468,347 B1 10/2002 Motoki et al. 7,806,078 B2 10, 2010 Yoshida 6,488,767 B1 12/2002 Xu et al. 7,858.408 B2 12/2010 Mueller et al. 6,498.355 B1 12/2002 Harrah et al. 7,862.761 B2 1/2011 Okushima et al. 6.498.440 B2 12/2002 Stam et al. 7,871.839 B2 /2011 Lee et al. 6,501,154 B2 12/2002 Morita et al. 7,884,538 B2 * 2/2011 Mitsuishi et al. ............. 313/5O2 6,509,651 B1 1/2003 Matsubara et al. T906.793 B2 3/2011 Negley 6,559,075 B1 5/2003 Kelly et al. 7968,864 B2 6/2011 Akita et al. 6,621.211 B1 9, 2003 Srivastava et al. 8,044,412 B2 10/2011 Murphy et al. 6,639,925 B2 10/2003 Niwa et al. 8,124,996 B2 2/2012 Raring et al. 6,680,959 B2 1/2004 Tanabe et al. 8,126,024 B1 2/2012 Raring 6,755,932 B2 6, 2004 Masuda et al. 8143148 B1 3, 2012 Raring et al 6,809,781 B2 10/2004 Setlur et al. siss.504 B2 5, 2012 Lee 6,814,811 B2 11/2004 Ose 8,198,643 B2 62012 Lee et al. 6,833,564 B2 12/2004 Shen et al. 8,203.61 B2 62012 Simonian et al. 6,853,010 B2 2/2005 Slater, Jr. et al. 8,207,548 B2 6/2012 Nagai 6,858,081 B2 2/2005 Biwa et al. 8.207,554 B2 6, 2012 Shum 6,858,882 B2 2/2005 Tsuda et al. 6,864,641 B2 3/2005 Dygert 8,242.522 B1 8/2012 Raring 6.920,166 B2 7/2005 Akasaka etal 8,247,886 B1 8/2012 Sharma et al. 6.956.246 B1 10/2005 Epler et al. 8,247,887 B1 8/2012 Raring et al. 6,989.807 B2 1/2006 Chiang 8,252,662 B1 8, 2012 Poblenz et al. 7,005,679 B2 2/2006 Tarsa et al. 8,254,425 B1 8/2012 Raring 7,009,199 B2 3, 2006 Hall 8,259,769 B1 9/2012 Raring et al. 7,012,279 B2 3/2006 Wierer, Jr. et al. 8,269,245 B1 9/2012 Shum 7,019,325 B2 3, 2006 Li et al. 8,284.810 B1 10/2012 Sharma et al. 7,027,015 B2 4/2006 Booth, Jr.
Recommended publications
  • Arecibo 430 Mhz Radar System
    file: 430txman 12-98 draft Aug. 31, 2005 Arecibo 430 MHz Radar System Operation and Maintenance Manual Written by Jon Hagen April 2001, 2nd ed. May 2005 1 NOTE With its high-voltage and high-power, and high places, this transmitter is potentially lethal. Proper precautions must be taken to avoid electrical shock, RF exposure, and X-ray exposure. (See Section 22). Emergency Procedure: ELECTRIC SHOCK Neutralize power 1. De-energize the circuit by means of switch or circuit breaker or cut the line by an insulated cutter. 2. Safely remove the victim from contact with the energy source by using dry wood stick, plastic rope, leather belt, blanket or any other non-conductive materials. Call for help 1. Others can help you administer first aid 2. Others can call professional medical help and/or arrange transfer facilities Cardio Pulmonary Resuscitation (CPR) 1. Check victim's ABC A - airway: Clear and open airway by head tilt - chin lift maneuver B - breathing: Check and restore breathing by rescue breathing C- circulation: Check and restore circulation by external chest compression 2. If pulse is present, but not breathing, maintain one rescue breathing (mouth to mouth resuscitation) as long as necessary. 3. If pulse and breathing are absent, give external chest compressions (CPR). 4. If pulse and breathing are present, stop CPR, stabilize the victim. 5. Caution: Only properly trained personnel should administer CPR to avoid further harm to 2 the victim. Administer first aid for shock 1. Keep the victim lying down, warm and comfortable to maintain body heat until medical assistance arrive.
    [Show full text]
  • Conceptual-Science-Labmanual.Pdf
    CP02_SE_LAB_ FM 3/5/01 12:28 PM Page i CONCEPTUAL PHYSICS Laboratory Manual Paul Robinson San Mateo High School San Mateo, California Illustrated by Paul G. Hewitt Needham, Massachusetts Upper Saddle River, New Jersey Glenview, Illinois CP02_SE_LAB_ FM 6/20/08 9:24 AM Page ii Contributors Consultants Roy Unruh Kenneth Ford University of Northern Iowa Germantown Academy Cedar Falls, Iowa Fort Washington, Pennsylvania Tim Cooney Jay Obernolte Price Laboratory School University of California Cedar Falls, Iowa Los Angeles, California Clarence Bakken Gunn High School Palo Alto, California Cover photograph: Motor Press Agent/Superstock, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. When such a designation appears in this book and the publisher was aware of a trademark claim, the designa- tion has been printed in initial capital letters (e.g., Macintosh). Copyright © 2002 by Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458. All rights reserved. Printed in the United States of America. This pub- lication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval sys- tem, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permis- sion(s), write to: Rights and Permissions Department. ISBN 0-13-054257-1 22 V 031 13 12 11 ii CP02_SE_LAB_ FM 3/5/01 12:28 PM Page iii Acknowledgments Most of the ideas in this manual come from teachers who share their ideas at American Association of Physics Teachers (AAPT) meetings that I have attended since my first year of teaching.
    [Show full text]
  • Chapter 23: Electric Current
    Lecture Outline Chapter 23: Electric Current © 2015 Pearson Education, Inc. This lecture will help you understand: • Flow of Charge • Electric Current • Voltage Sources • Electrical Resistance • Ohm's Law • Direct Current and Alternating Current • Speed and Source of Electrons in a Circuit • Electric Power • Compact Fluorescent Lamps (CFLs) • Light-Emitting Diodes (LEDs) • Electric Circuits © 2015 Pearson Education, Inc. Flow of Charge • When the ends of an electrical conductor are at different electric potentials—when there is a potential difference— charge flows from one end to the other. – Analogous to water flowing from higher pressure to lower pressure © 2015 Pearson Education, Inc. Flow of Charge • To attain a sustained flow of charge in a conductor, some arrangement must be provided to maintain a difference in potential while charge flows from one end to the other. – A continuous flow is possible if the difference in water levels—hence the difference in water pressures—is maintained with the use of a pump. © 2015 Pearson Education, Inc. Electric Current • Electric current – Flow of charged particles • In metal wires – Conduction electrons are charge carriers that are free to move throughout atomic lattice. – Protons are bound within the nuclei of atoms. • In fluids – Positive ions and electrons constitute electric charge flow. © 2015 Pearson Education, Inc. Electric Current CHECK YOUR NEIGHBOR Which of these statements is true? A. Electric current is a flow of electric charge. B. Electric current is stored in batteries. C. Both A and B are true. D. Neither A nor B are true. © 2015 Pearson Education, Inc. Electric Current CHECK YOUR ANSWER Which of these statements is true? A.
    [Show full text]
  • Current and Resistance
    chapter 27 Current and Resistance . Electric Current . Resistance . A Model for Electrical Conduction . Resistance and Temperature . Superconductors . Electrical Power We now consider situations involving elec- tric charges that are in motion through some region of space. We use the term electric cur- rent, or simply current, to describe the rate of flow of charge. Most practical applications of electricity deal with electric currents. For example, the battery in a flashlight produces a current in the filament of the bulb when the switch is turned on. A variety of home appli- These two lightbulbs provide similar power output by visible light ances operate on alternating current. In these (electromagnetic radiation). The compact fluorescent bulb on the left, however, produces this light output with far less input by electrical common situations, current exists in a conduc- transmission than the incandescent bulb on the right. The fluorescent bulb, tor such as a copper wire. Currents can also therefore, is less costly to operate and saves valuable resources needed to generate electricity. (Image copyright Christina Richards, . Used under license exist outside a conductor. For instance, a beam from Shutterstock.com.) of electrons in a particle accelerator constitutes a current. This chapter begins with the definition of current. A microscopic description of cur- rent is given, and some factors that contribute to the opposition to the flow of charge in conductors are discussed. A classical model is used to describe electrical conduction in metals, and some limitations of this model are cited. We also define electrical resistance and introduce a new circuit element, the resistor.
    [Show full text]
  • Condemnation Without Examination Is Prejudice, Or Words of Wisdom, by John Curl
    Condemnation without Examination is Prejudice, or Words of Wisdom, by John Curl May 2006 John Curl at CES 2001 John Curl at CES 2002. John Curl at CES 2006 2 “I am always giving stuff away for free. It is not in my best interest, and I am continually reminded of this by my associates. It is so easy! I already know it. Yet, when someone tries to patent your suggestion, without your knowledge, trust me, it is a wakeup call.” “By the way, I only developed some of the topologies that you folks use, but I am familiar with all of them. Who do you think first developed most of the circuits that you make here on DIY audio? Do you have any idea?” J. Curl 1 About myself I am an audio design consultant, have been for more than 30 years, and I design several new or improved products every year. I KNOW HOW to develop the topology and get the basic performance from audio circuits. However, this is NOT enough, IF I want to make something other than a mid-fi product. I have proven this to myself by allowing others, in the past, to make the 'minor decisions' such as connectors, layout, wiring, etc and have paid the price of poor sales, and a diminishment of my design reputation. I could NOT MEASURE any problems, with previous decisions, just lost sales and less enthusiastic reviews. I did some of my best work when I worked at AMPEX, as well. What a place! A wonderful technical library.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,656,398 Michael Et Al
    United States Patent (19) 11 Patent Number: 4,656,398 Michael et al. 45) Date of Patent: Apr. 7, 1987 54) LIGHTING ASSEMBLY 2,802,144 8/1957 Spear ................................... 315/292 4,414,617 11/1983 Galindo ............................... 362/285 76 Inventors: Anthony J. Michael, 4205 Adobe Dr., 4,484,105 11/1984 Kriete et al. ........................ 315/133 Tallahassee, Fla. 32.303; James E. 4,591,953 5/1986 Oram ................................... 362/285 Nelson, 515 W. Beechdale, Union Primary Examiner-Harold Dixon Lake, Mich. 48085 Attorney, Agent, or Firm-Krass & Young 21 Appl. No.: 803,302 57 ABSTRACT 22) Filed: Dec. 2, 1985 A lighting assembly including a plurality of housing 51 Int. Cl. .......................... F21V23/00; F21S 1/04 sections, a series of rib groups arranged circumferen 52) U.S. C. ...................................... 315/293; 315/76; tially on the exterior of the housing sections, and a 315/133; 315/326; 362/285; 362/404; 362/800 remote control assembly for selectively energizing tri 58) Field of Search ............... 315/293, 133, 362,363, color diodes embedded in the ribs so that the rib groups 315/32, 35; 362/285, 800, 404 can be selectively and independently caused to glow in References Cited various colors depending on the aspect of the electrical (56) energy delivered to each particular rib group. U.S. PATENT DOCUMENTS 2,498,943 2/1950 Courtney .............................. 315/32 21 Claims, 16 Drawing Figures U.S. Patent Apr. 7, 1987 Sheet 1 of 7 4,656,398 El U.S. Patent Apr. 7, 1987 Sheet 2 of 7 4,656,398 U.S.
    [Show full text]
  • IN CONTROL Benefits of Connected Lighting Go Beyond Energy Savings
    electroindustry www.nema.org | March/April 2020 | Vol. 25 No. 2 IN CONTROL Benefits of Connected Lighting Go Beyond Energy Savings 2019 Hermes Award 2018 AM&P EXCEL Award 2018 Hermes Award 2017 Azbee Award CONTENTS 17 Meet Laury Soucy, Director of 6 Steve Mesh explores the benefits of connected lighting The NEC is the hot topic for Tim McClintock’s column 18 Statistical Operations for NEMA The Non-Energy Benefits of Connected Lighting electroindustry 6 Steve Mesh, Principal, Lighting Education & Design Publisher | Tracy Cullen Managing Editor | Jena Passut The Connected Retail Store: Bringing Online to On-site Contributing Editors | Ann Brandstadter, 8 Neil Egan, Director, Communications, Acuity Brands Lighting Mariela Echeverria, Andrea Goodwin, William E. Green III Art Director | Jennifer Tillmann Advertising Executive | Travis Yaga Specifying Light Sources beyond Color Fidelity The YGS Group Kees Teunissen, Senior Scientist, Light and Vision, Signify Research 10 717.430.2021 [email protected] Lighting’s Role in Energy Conservation electroindustry (ei) magazine (ISSN 1066-2464) is published bimonthly by the National Electrical Manufacturers Association 11 (NEMA), 1300 N. 17th Street, Suite 900, Rosslyn, VA 22209; Is Market Driven 703.841.3200. Periodicals postage paid at Rosslyn, Virginia, and Clark Silcox, NEMA General Counsel additional mailing offices. POSTMASTER: Send address changes to NEMA, 1300 N. 17th Street, Suite 900, Rosslyn, VA 22209. The opinions or views expressed in ei do not necessarily reflect the positions of NEMA or any of its subdivisions. The editorial staff reserves the right to edit all submissions but will not alter Can Connected Lighting Provide Grid Services the author’s viewpoint.
    [Show full text]
  • Chapter 2 Incandescent Light Bulb
    Lamp Contents 1 Lamp (electrical component) 1 1.1 Types ................................................. 1 1.2 Uses other than illumination ...................................... 2 1.3 Lamp circuit symbols ......................................... 2 1.4 See also ................................................ 2 1.5 References ............................................... 2 2 Incandescent light bulb 3 2.1 History ................................................. 3 2.1.1 Early pre-commercial research ................................ 4 2.1.2 Commercialization ...................................... 5 2.2 Tungsten bulbs ............................................. 6 2.3 Efficacy, efficiency, and environmental impact ............................ 8 2.3.1 Cost of lighting ........................................ 9 2.3.2 Measures to ban use ...................................... 9 2.3.3 Efforts to improve efficiency ................................. 9 2.4 Construction .............................................. 10 2.4.1 Gas fill ............................................ 10 2.5 Manufacturing ............................................. 11 2.6 Filament ................................................ 12 2.6.1 Coiled coil filament ...................................... 12 2.6.2 Reducing filament evaporation ................................ 12 2.6.3 Bulb blackening ........................................ 13 2.6.4 Halogen lamps ........................................ 13 2.6.5 Incandescent arc lamps .................................... 14 2.7 Electrical
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,723,434 B2 Watson Et Al
    USOO8723434B2 (12) United States Patent (10) Patent No.: US 8,723,434 B2 Watson et al. (45) Date of Patent: May 13, 2014 (54) LED BULB FOR GENERAL AND LOW (56) References Cited INTENSITY LIGHT U.S. PATENT DOCUMENTS (75) Inventors: Calvin Hugh Watson, Austin, TX (US); 8,188,671 B2 * 5/2012 Canter et al. .................. 315,224 Cheryl Lynn Heinsohn, Austin, TX 2006/0238136 A1 * 10/2006 Johnson, III et al. ..... 315, 185 R. (US) 2011/O133649 A1* 6, 2011 Kreiner et al. .................. 315,86 2011/01934.82 A1* 8, 2011 Jones .............................. 315/87 (73) Assignee: Calvin Hugh Watson, Austin, TX (US) * cited by examiner (*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Crystal L Hammond patent is extended or adjusted under 35 U.S.C. 154(b) by 102 days. (57) ABSTRACT Abimodal light emitting diode (LED) lightbulb, method, and (21) Appl. No.: 13/452,623 system having a form factor compatible with industry stan dard lightbulb sockets provides general lighting when power (22) Filed: Apr. 20, 2012 is received via one or more lightbulb electrical contacts, then as a different luminosity when power is removed from the contacts. A first subset of LEDs is powerable via the contacts (65) Prior Publication Data for general light, while a second subset of LEDs is powerable US 2013/0278162 A1 Oct. 24, 2013 via an energy storage device. Both Subsets of LEDs are pack aged in a replaceable light bulb. The energy storage device Int. C. may comprise a capacitor or battery which may be charged (51) when power is Supplied via the contacts.
    [Show full text]
  • World Electricity Standards Voltage and Frequency
    World Electricity Standards There is no standard mains voltage throughout the world and also the frequency, i.e. the number of times the current changes direction per second, is not everywhere the same. Moreover, plug shapes, plug holes, plug sizes and sockets are also different in many countries. Those seemingly unimportant differences, however, have some unpleasant consequences. Most appliances bought overseas simply cannot be connected to the wall outlets at home. There are only two ways to solve this problem: you just cut off the original plug and replace it with the one that is standard in your country, or you buy an unhandy and ugly adapter. While it is easy to buy a plug adapter or a new "local" plug for your "foreign" appliances, in many cases this only solves half the problem, because it doesn't help with the possible voltage disparity. A 110-volt electrical appliance designed for use in North America or Japan will provide a nice fireworks display - complete with sparks and smoke - if plugged into a European socket. It goes without saying that the lack of a single voltage, frequency and globally standardized plugs entail many extra costs for manufacturers and increase the burden on the environment. Pure waste and unnecessary pollution! Voltage and frequency Europe and most other countries in the world use a voltage which is twice that of the US. It is between 220 and 240 volts, whereas in Japan and in most of the Americas the voltage is between 100 and 127 volts. The system of three-phase alternating current electrical generation and distribution was invented by a nineteenth century creative genius named Nicola Tesla.
    [Show full text]
  • Section 4 - Diagram Contents
    _______________________________________________________________________________________________ Section 4 - Diagram Contents: - Cable diagram - MTF0077AR0 Amplifier module - Component list - SCH0192AR0 (200W UHF LDMOS Amplifier module) - SCH0223AR1 (Control board and display) - SCH0259AR0 (RF Amplifier interface) - SCH0265AR0 (Mains distribution board) - SCH0288AR1 (Interface board) - E0012 (SP500-27-DE2 Switching power supply) 31 32 Component list MTF0077AR0 Amplifier module Part Name Code Description Qty Page 1/2 00441 TERMINAZIONE 50W 500W 32-1123-50-5 1 01400 C. PAS. 2499-003-X5U0-102M 11 02402 7/16 FEMMINA ANIM. FILET. cod. 0142 1 SCH0192AR0 SCHEDA AMPLIFIC. 200W UHF LDMOS PHILIPS 7 00424 TERMINAZIONE 50W 250W 32-1037-50-5 6 03207 DIODO HSMS-2802*L31 3 00028A 82W RESISTENZA SMD 1/4W 3 01041D 1nF COND, SMD 1206 2% 3 08527 CAVO HF-85 ENDIFORM 0,40 08502 CAVO RG316 50W 1,70 CAV092 CAVO RG179 75W DA 10cm 8 DET0732 DET0732R1 PIASTRINA SUPPORTO CONNESSIONI 1 DET0959 DET0959R0 SPESSORE x PN1120A 1 02520 GE 65125 D/22 SMA A VIT. RG174/c 1 02512 J01151A0531 PRESA SMA SEN. BAT 1 DET0868 DET0868R0 SPESS. ACC. DIR. ING. 1000W UHF 1 PN1083A C.S. PN1083AR2 ACCOPPIATORE INGRES. 1500W 1 PN1091A C.S. PN1091AR3 ACCOP. DIREZ. OUT 1500W UHF 1 DET0839 DET0839R2 ACCOPPIATORE DIREZIONALE 1 DET0810 DET0810R0 PART. x ACCOPPIATORE DIREZIONALE 1 00029D 100W RESISTENZA SMD 1206 1% 1 00221B 75W RESISTENZA SMD 1206 1% 2 01408 C. PAS. 5000PF 2 DET0811 DET0811R1 CHIUS. x ACCOP. DIREZIONALE 1 DET0812 DET0812R1 ANELLO IN TEFLON x ACCOP. DIR. 1 00001 0W REISTENZA SMD 1206 2 PN1077A C.S. PN1077AR2 COMBINATORE 6VIE 1kW UHF 1 PN1120A C.S.
    [Show full text]
  • Vật Lý 2,Dhspkthcm
    824 Chapter 27 Current and Resistance The current density J The resistance R of a conductor is defined as in a conductor is the cur- DV R ; (27.7) rent per unit area: I I where DV is the potential difference across the conductor and I is the current it car- J ; (27.5) A ries. The SI unit of resistance is volts per ampere, which is defined to be 1 ohm (V); that is, 1 V 5 1 V/A . Concepts and Principles The average current in a conductor The current density in an ohmic conductor is proportional to the is related to the motion of the charge electric field according to the expression carriers through the relationship J 5 sE (27.6) I 5 nqv A (27.4) avg d The proportionality constant s is called the conductivity of the material where n is the density of charge carri- of which the conductor is made. The inverse of s is known as resistivity ers, q is the charge on each carrier, vd r (that is, r 5 1/s). Equation 27.6 is known as Ohm’s law, and a mate- is the drift speed, and A is the cross- rial is said to obey this law if the ratio of its current density to its applied sectional area of the conductor. electric field is a constant that is independent of the applied field. For a uniform block In a classical model of electrical conduction in metals, the electrons are treated as of material of cross- molecules of a gas.
    [Show full text]