The Picking Table Volumes 48-49, Combined Issue 2007-2008
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sarkinite Mn (Aso4)(OH)
2+ Sarkinite Mn2 (AsO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals typically thick tabular {100}, elongated, to 4 mm, short prismatic, or tabular along [010]. May be crudely spherical, granular massive. Physical Properties: Cleavage: On {100}, distinct. Fracture: Subconchoidal to uneven. Hardness = 4–5 D(meas.) = 4.08–4.18 D(calc.) = 4.20 Optical Properties: Semitransparent. Color: Flesh-red to dark blood-red, rose-red, orange, orange-brown, brown, reddish yellow to yellow; pale rose to yellow in transmitted light. Streak: Rose-red to yellow. Luster: Greasy. Optical Class: Biaxial (–). Pleochroism: Weak. Orientation: Y = b; X ∧ c = –54◦. Dispersion: r< v. Absorption: X > Z > Y. α = 1.790–1.793 β = 1.794–1.807 γ = 1.798–1.809 2V(meas.) = 83◦ Cell Data: Space Group: P 21/a. a = 12.779(2) b = 13.596(2) c = 10.208(2) β = 108◦530 Z=16 X-ray Powder Pattern: Pajsberg [Harstigen mine, near Persberg], Sweden. 3.18 (10), 3.04 (10), 3.29 (9), 3.48 (8), 2.90 (7), 2.65 (6), 6.0 (3) Chemistry: (1) (2) (3) (1) (2) (3) P2O5 0.21 ZnO 0.15 As2O5 41.60 44.09 43.23 PbO 0.25 CO2 0.76 MgO 0.98 0.19 FeO 0.13 0.02 CaO 1.40 0.29 MnO 51.60 51.77 53.38 H2O 3.06 [3.40] 3.39 CuO 0.01 insol. 0.38 Total 100.37 [99.92] 100.00 (1) Pajsberg [Harstigen mine, near Persberg], Sweden. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
NEW MINERAL NAMES Mrcnnnr Fr-Brscnpn
THE AMERICAN MINERAI,OGIST, VOL. 55, JANUARY-FEBRUARY, 1970 NEW MINERAL NAMES Mrcnnnr Fr-Brscnpn Barringerite P. R. Busrcr (1969) Phosphide from meteorites.' Barringerite, a new iron-nickel mineral. Sci,ence165, 169-17 1,. The average of microprobe analyses was Fe 44.3*0.9, Ni 33.9+0.7, Co 0.25+0.03, P 21.8+0.4, stm 10O.25/6,corresponding to (Irer.roNio.srCoo.n)P,or (Fe, Ni)rP. X-ray study shows it to be hexagonal,space group P62 m, a 5.87 -t0.07, c 3.M+0.04 ft. The strongest X-ray lines (including many overlapping troilite or schreibersite; those starred do not overlap) are 2.98 (110),2.85* (101),2.53(200),2.23(lll),2.03*(201), 1.88* (r20), r.72(t00), 1.68(300, t2r), L.48(220), t.4t(3t0, 22r), r.29*(31r), 1.28(122), t.27 (400), 1.205(302),1.197(4oD.The structure is similar to those of synthetic FerP and NirP. p (calc) 6.92. Color white, very similar to that of kamacite, bluish compared to schreibersite. Harder than either kamacite or schreibersite. Reflectivity in air and oil slightly higher than that of schreibersite, lower than that of kamacite. Noticeably anisotropic (white to blue). Bireflectance not observed. The mineral occurs as bands 10-15 pm wide and several hundred microns long; they consist of individual grains less than 1 pm in diameter. They occur in the Ollague pallasite along the contacts between schreibersite and troilite. The name is for D. -
Jarosewichite and a Related Phase: Basic Manganese Arsenates of the Chlorophoenicite Group from Franklin, New Jersey
American Mineralogist, Volume 67, pages 1043-1047,1962 Jarosewichite and a related phase: basic manganese arsenates of the chlorophoenicite group from Franklin, New Jersey Pe,re J. DUNN Department of Mineral Sciences Smit hsonian I nstit utio n Washington, D.C.20560 DoNelo R. Pr,econ Department of Geological Sciences University of Michigan Ann Arbor, Michigan 48109 PBrBn B. LBeveNs Department of Geology University of Delaware Newark, Delaware l97II eNo Wrllreu B. SIuuoNs Department of Earth Sciences University of New Orleans New Orleans. Louisiana 70148 Abstract Jarosewichite,Mn3+Mn3+(AsOn)(OH)0, is a new mineral, closely related to chloro- phoenicite,from the Franklin mine, Franklin, SussexCounty, New Jersey,where it occurs associatedwith andradite,franklinite, flinkite, cahniteand hausmannite.Jarosewichite is orthorhombic,space grotp C2lmLlm2lm,C222 or Cmm2,with a : 6.56(3),b : 25.20(10),c : 10.00(5)4,and Z : 8. The strongestlines in the X-ray powder difraction patternare (d, I, hkD2.669 100 222,082;3.91 60 042,061;1.788 50 (notindexed);2.503 30 242,261,004,0 l0 0. Jarosewichiteis dark red, occursin prismaticbarrel-shaped aggregates, has a density of 3.66(obs),3.70glcm3(calc).Itisbiaxial(-)withrefractiveindicesd= 1.780(5),p= 1.795(5)and y= 1.805(5);theorientationisX:a,Y: b,Z = c;pleochroismisweak,Z) X. Microprobeanalysis with Mn3+calculated, yields: FeO 0.4, MgO 2.l,CaO0.2,ZnO 1.2, MnO 42.3, Mn2O317.7 (IMn = 45.1 wt.%), AszOs24.0, with H2O 12.1 percent by difference,sum : 100.0percent. A secondmanganese arsenate from Franklin, New Jersey,is alsorelated to chlorophoen- icite, but may be heterogeneous.Although optical, chemicaland crystallographicproper- ties are characterized,there is sufficient ambiguity to deny it speciesstatus at this time. -
The Picking Table Volume 50, No. 2 – Fall 2009
2009FallPT:Layout 1 8/27/2009 10:21 AM Page 1 JOURNAL OF THE FRANKLIN-OGDENSBURG MINERALOGICAL SOCIETY Volume 50, No. 2 – Fall 2009 $20.00 U.S. SPECIAL EDITION TH 50 ANNIVERSARY The contents of The Picking Table are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 2009FallPT:Layout 1 8/27/2009 10:21 AM Page 2 The Franklin-Ogdensburg Mineralogical Society, Inc. OFFICERS and STAFF 2009 PRESIDENT SLIDE COLLECTION CUSTODIAN Bill Truran Edward H. Wilk 2 Little Tarn Court, Hamburg, NJ 07419 202 Boiling Springs Avenue (973) 827-7804 E. Rutherford, NJ 07073 [email protected] (201) 438-8471 VICE-PRESIDENT TRUSTEES Richard Keller C. Richard Bieling (2009-2010) 13 Green Street, Franklin, NJ 07416 Richard C. Bostwick (2009-2010) (973) 209-4178 George Elling (2008-2009) [email protected] Steven M. Kuitems (2009-2010) Chester S. Lemanski, Jr. (2008-2009) SECOND VICE-PRESIDENT Lee Lowell (2008-2009) Joe Kaiser Earl Verbeek (2008-2009) 40 Castlewood Trail, Sparta, NJ 07871 Edward H. Wilk (2008-2009) (973) 729-0215 Fred Young (2008-2009) [email protected] LIAISON WITH THE EASTERN FEDERATION SECRETARY OF MINERALOGICAL AND LAPIDARY Tema J. Hecht SOCIETIES (EFMLS) 600 West 111TH Street, Apt. 11B Delegate Joe Kaiser New York, NY 10025 Alternate Richard C. Bostwick (212) 749-5817 (Home) (917) 903-4687 (Cell) COMMITTEE CHAIRPERSONS [email protected] Auditing William J. Trost Field Trip Warren Cummings TREASURER Historical John L. Baum Denise Kroth Mineral Exchange Richard C. Bostwick 240 Union Avenue Nominating William Kroth Wood-Ridge, NJ 07075 Program Fred Young (201) 933-3029 Swap & Sell Chester S. -
B Clifford Frondel
CATALOGUE OF. MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM -B CLIFFORD FRONDEL BU.LLETIN OF THEAMRICANMUSEUM' OF NA.TURAL HISTORY. VOLUME LXVII, 1935- -ARTIC-LE IX- NEW YORK Tebruary 26, 1935 4 2 <~~~~~~~~~~~~~7 - A~~~~~~~~~~~~~~~, 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 4 4 A .~~~~~~~~~~~~~~~~~~~~~~~~~~4- -> " -~~~~~~~~~4~~. v-~~~~~~~~~~~~~~~~~~t V-~ ~~~~~~~~~~~~~~~~ 'W. - /7~~~~~~~~~~~~~~~~~~~~~~~~~~7 7-r ~~~~~~~~~-A~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -'c~ ~ ~ ' -7L~ ~ ~ ~ ~ 7 54.9:07 (74.71) Article IX.-CATALOGUE OF MINERAL PSEUDOMORPHS IN THE AMERICAN MUSEUM OF NATURAL HISTORY' BY CLIFFORD FRONDEL CONTENTS PAGE INTRODUCTION .................. 389 Definition.389 Literature.390 New Pseudomorphse .393 METHOD OF DESCRIPTION.393 ORIGIN OF SUBSTITUTION AND INCRUSTATION PSEUDOMORPHS.396 Colloidal Origin: Adsorption and Peptization.396 Conditions Controlling Peptization.401 Volume Relations.403 DESCRIPTION OF SPECIMENS.403 INTRODUCTION DEFINITION.-A pseudomorph is defined as a mineral which has the outward form proper to another species of mineral whose place it has taken through the action of some agency.2 This precise use of the term excludes the regular cavities left by the removal of a crystal from its matrix (molds), since these are voids and not solids,3 and would also exclude those cases in which organic material has been replaced by quartz or some other mineral because the original substance is here not a mineral. The general usage of the term is to include as pseudomorphs both petrifactions and molds, and also: (1) Any mineral change in which the outlines of the original mineral are preserved, whether this surface be a euhedral crystal form or the irregular bounding surface of an embedded grain or of an aggregate. (2) Any mineral change which has been accomplished without change of volume, as evidenced by the undistorted preservation of an original texture or structure, whether this be the equal volume replacement of a single crystal or of a rock mass on a geologic scale. -
Use of Local Minerals in the Treatment of Radioactive Waste
O = 0(0H) •=Si(AI) O = 0(0H) # = AI, Mg, Fe, etc. TECHNICAL REPORTS SERIES No. 136 Use of Local Minerals in the Treatment of Radioactive Waste INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1972 USE OF LOCAL MINERALS IN THE TREATMENT OF RADIOACTIVE WASTE The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PAKISTAN ALBANIA HAITI PANAMA ALGERIA HOLY SEE PARAGUAY ARGENTINA HUNGARY PERU AUSTRALIA ICELAND PHILIPPINES AUSTRIA INDIA POLAND BELGIUM INDONESIA PORTUGAL BOLIVIA IRAN ROMANIA BRAZIL IRAQ SAUDI ARABIA BULGARIA IRELAND SENEGAL BURMA ISRAEL SIERRA LEONE BYELORUSSIAN SOVIET ITALY SINGAPORE SOCIALIST REPUBLIC IVORY COAST SOUTH AFRICA CAMEROON JAMAICA SPAIN CANADA JAPAN SUDAN CEYLON JORDAN SWEDEN CHILE KENYA SWITZERLAND CHINA KHMER REPUBLIC SYRIAN ARAB REPUBLIC COLOMBIA KOREA, REPUBLIC OF THAILAND COSTA RICA KUWAIT TUNISIA CUBA LEBANON TURKEY CYPRUS LIBERIA UGANDA CZECHOSLOVAK SOCIALIST LIBYAN ARAB REPUBLIC UKRAINIAN SOVIET SOCIALIST REPUBLIC LIECHTENSTEIN REPUBLIC DENMARK LUXEMBOURG UNION OF SOVIET SOCIALIST DOMINICAN REPUBLIC MADAGASCAR REPUBLICS ECUADOR MALAYSIA UNITED KINGDOM OF GREAT EGYPT, ARAB REPUBLIC OF MALI BRITAIN AND NORTHERN EL SALVADOR MEXICO IRELAND ETHIOPIA MONACO UNITED STATES OF AMERICA FINLAND MOROCCO URUGUAY FRANCE NETHERLANDS VENEZUELA GABON NEW ZEALAND VIET-NAM GERMANY, FEDERAL REPUBLIC OF NIGER YUGOSLAVIA GHANA NIGERIA ZAIRE, REPUBLIC OF GREECE NORWAY ZAMBIA The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957, The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". -
Redetermination of Eveite, Mn2aso4 (OH), Based on Single-Crystal X-Ray
inorganic compounds Acta Crystallographica Section E Experimental Structure Reports Crystal data Online ˚ 3 Mn2AsO4(OH) V = 469.33 (15) A ISSN 1600-5368 Mr = 265.81 Z =4 Orthorhombic, Pnnm Mo K radiation a = 8.5478 (16) A˚ = 12.29 mmÀ1 Redetermination of eveite, b = 8.7207 (16) A˚ T = 293 K c = 6.2961 (12) A˚ 0.05 Â 0.05 Â 0.04 mm Mn2AsO4(OH), based on single-crystal X-ray diffraction data Data collection Bruker APEXII CCD area-detector 3315 measured reflections diffractometer 911 independent reflections a b c Yongbo W. Yang, * Ryan A. Stevenson, Alesha M. Siegel Absorption correction: multi-scan 849 reflections with I >2(I) and Gordon W. Downsd (SADABS; Sheldrick, 2005) Rint = 0.015 Tmin = 0.579, Tmax = 0.639 aDepartment of Chemistry and Biochemistry, University of Arizona, 1306 Refinement E. University Blvd, Tucson, Arizona 85721-0041, USA, bDepartment of 2 2 Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona R[F >2(F )] = 0.021 49 parameters 2 85721-0077, USA, cDepartment of Molecular and Cellular Biology, University of wR(F ) = 0.055 All H-atom parameters refined ˚ À3 Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721-0106, USA, and dUniversity S = 1.09 Ámax = 1.28 e A 911 reflections Á = À1.15 e A˚ À3 High School, 421 N. Arcadia Avenue, Tucson, Arizona 85711-3032, USA min Correspondence e-mail: [email protected] Received 16 October 2011; accepted 24 October 2011 Table 1 Hydrogen-bond geometry (A˚ , ). Key indicators: single-crystal X-ray study; T = 293 K; mean (As–O) = 0.002 A˚; R factor = 0.021; wR factor = 0.055; data-to-parameter ratio = 18.6. -
The Picking Table Volume 9, No. 1
JOURNAL OF THE FRANKLIN-OGDENSBURG MINERALOGIGAL SOCIETY VOLUME 9 FEBRUARY 1968 NUMBER 1 The contents of The Picking Table are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. CLUB PROGRAM - SPRING 1968 All meetings will be held at the Hardyston School, intersection of Routes #23 and #517, Franklin, 5f. J. Pre meeting activities start at 1:00 P. A. Speaker will be announced at 2:30 P. M. Saturday Field Trip, 10 A.M. to 1:00 P.M. to March 16th Geology Department, Lafayette College, Easton, Pa. Details later. Saturday , Proposed Field Trip to Fossil Location. April 6th Saturday, Field Trip, 9:00 A.,,, to iioon, April 20th Buckwheat Dump, Franklin, N.J. Meeting 2:30 P.M. Speaker, Alexander Klinshaw on "The Minerals of New Jersey" Sunday, Proposed Field Trip, 5th. Limecrest wuarry, uparta, K. J. Saturday , Proposed Field Trip, 9:00 n..^. to Noon. May 18th Open Cut, Sterling Hill r'iine, Ogdensburg, N.J. Meeting, 2:30 P.M. Speaker, Dr. Clifford Frondel, Saturday, Identification Workshop. June 8th ^aturday, Field Trip, 9:00 A.M. to i<oon June 22nd Farber Quarry, Franklin, &.J. Swap Session (interclub) Saturday, Field Trip, 12 noon to 3'-30 P.k. July 13th Bethlehem Steel Co., Cornwall, Pa. Recommended ^a turday/Sunday Fourth annual Mineral Show sponsored by May llth/12th the Matawan Mineralogical Society, Inc. Matawan Kerional High School, Atlantic ..venue, Matawan, N.J. June 27th/29th eastern Federation Mineral Show Curtis Hickson Convention Center, Tampa, Florida. * * * * THE PICKING TABLr. is issued twice a year; a February issue to reach members about March 1st with news and the Club Spring program; an August issue to reach members about September 1st with news and the Fall program. -
The Lead Silicates from Franklin, New Jersey: Occurrence and Composition
MINERALOGICAL MAGAZINE, DECEMBER 1985, VOL. 49, PP. 7217 The lead silicates from Franklin, New Jersey: occurrence and composition PETE J. DUNN Department of Mineral Sciences, Smithsonian Institution, Washington, DC 20560, USA ABSTRACT. The lead silicate minerals from Franklin, History and occurrence New Jersey, occurred in two separate assemblages. One of these is characterized by esperite associated with hardy- Inasmuch as the Franklin Mine was mined-out stonite and occasionallarsenite. The second assemblage and flooded in 1954, examination of the geologic can be considered as two parts: one consists of margaro- relations of the occurrences of the lead silicates was sanite, barysilite, nasonite, and ganomalite; the other not possible. Recourse was made to mine maps and contains roeblingite and hancockite, together with a interviews with former employees ofthe New Jersey number of highly hydrated phases. Chemical analyses Zinc Company who had examined these occur- indicate that these species conform to their theoretical rences, most notably John L. Baum, retired resident compositions. There are no simple lead siJicates at geologist for the Franklin Mine. Franklin; al1 are compound silicates of Pb with Mn, Zn, and Ca. KEYWORDS: lead silicates, barysilite, esperite, ganomal- Table l. The lead silicate minerals found at ite, hancockite, larsenite, margarosanite, nasonite, roe- Franltlin, New Jersey blingite, Franklin, New Jersey, USA. BARYSILITE PbSMn(Si207)3 ATthe end of the 19th century a remarkable suite of ESPERITE ca3PbZn4(Si04)4 uncommon minerals was found on the Parker GANOMALITE Pb9CaSMnSi9ÜJ3 dump, near the Parker shaft of the Franklin Mine, (OH) in Franklin, Sussex County, New Jersey. This suite HANCOCKITE PbCa(A1,Fe3+)3(Si04)3 inc\uded a number of unknown minerals which LARSENITE PbZnSi04 were subsequently described as new species. -
Franklin, Fluorescent Mineral Capital of the World
FRANKLIN, FLUORESCENT MINERAL CAPITAL OF THE WORLD © Spex Industries, Inc. 1981 by R.W. )ones, Jr. 3520 N. Rose Circle Dr., Scottsdale, AZ 85251 Tell people that Franklin, New Jersey is lots. In the hustle and bustle of their daily The deposit has yielded close to 300 noted throughout the world for its myriad lives, people tend to forget New Jersey's different minerals, a number vastly fluorescent minerals and your reward is natural endowments: the rich farmlands greater than from any other known source likely to be a blank stare. Tell them that of the south, t he rolling forest and grazing in the world. More amazing, nearly 60 of Franklin, along with neighboring Ogdens lands of the northwest, the manicured these minerals exhibit luminescence, in burg, is the home of a truly unique metal lawns and rich green golf courses of its the form of almost instantaneous fluores deposit and boredom sets in for sure. But suburbs, and the unique zinc-manganese- cence or as days long persistent take them for a walk on a dark night iron deposits of Franklin and Sterling Hill phosphorescence. across the waste rock dumps atop this ore Maybe for two or three weeks of t he deposit and they begin to act strangely. su mmer people forego the turmoil and The luminescence of many Frankl in Like children in a candy shop, they're cavort on ocean beaches or bask in the species explains the strange behavior intrigued, captivated by the multi-hued glory of a sun-dappled lake. But to accept noted among miners and mineral colors of these chameleon rocks. -
ZINCIAN AEGIRINE-AUGITE and JEFFERSONITE from FRANKLIN, NEW JERSEY Cr.Rrnonofnonnbr Enn Jux Ho, Departmentof Geolog,Icalsciences, H Arsaril [] Niaer Sity Cambrid
THE AMERICAN MINERALOGIST, VOL 51, SEPTEMBER_OCTOBER, 1966 ZINCIAN AEGIRINE-AUGITE AND JEFFERSONITE FROM FRANKLIN, NEW JERSEY Cr.rrnonoFnoNnBr eNn Jux ho, Departmentof Geolog,icalSciences, H arsaril [] niaer sity Cambrid. ge, M as s a chu s e tt s.r Agsrnect A coarsely crystallized dark colored monoclinic pyroxene found abundantly in skarn zones at Franklin and Sterling Hill, New Jersey, has long been known under the name jefiersonite. It has been classed as a diopsidic pyroxene, but four new chemical analyses (with accompanying r-ray and optical data) establish that it comprises highly zincian and manganoan members of a series from aegirine-augite to sodian and ferrian augite. Both Mn2+ and Zn are much in excess of Fe2f, with almost 40 atomic per cent Mn in the B position in one analysis. As Fea+and Na decrease the color changes from reddish brown and mahogany brown to dark olive green and greenish black. The original jefiersonite of Vanuxem and Keating (1822) probably referred to the latter material; the name lacks species or varietal significance and may be set aside. INtnooucuoN Three different types of pyroxene have been found in the so-called skarn zones in the orebodiesat Franklin and Sterling Hill, New Jersey. The most common type is a manganoan and sometimes also zincian variety of diopside. It generally contains NInO in the range from 4 to 10 weight per cent (Table 1, anal. 1 to 5). If little or Lo Zn is present,this material has been called schefierite,following the varietal name originally proposedby Michaelson(1863) for manganoandiopside of similar com- position from Langban, Sweden.