Peripheral Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Peripheral Nervous System Peripheral Nervous System 1 Sensory Receptors and Sensation • Sensory Receptors – Respond to changes (stimuli) in the environment – Generate graded potentials that can trigger an action potential that is carried to the CNS • Sensation – awareness of the stimulus • Perception – interpretation of the stimulus • Classification by Stimulus Type – Mechanoreceptors – Thermoreceptors – Photoreceptors – Chemoreceptors – nociceptors 2 Sensory Receptors and Sensation • Classification by Location – Exteroceptors – Interoceptors – Proprioceptors • Classification by Structural Complexity – Simple Receptors • Modified dendritic endings • Found throughout the body • Monitor general sensation – Complex Receptors • Sense organs (special senses) 3 Sensory Receptors and Sensation • Simple Receptors of the General Senses 4 Sensory Receptors and Sensation 5 Sensory Receptors and Sensation • Sensation to Perception – General Organization of the Somatosensory System – three major levels – Receptor Level Processing – sensory neurons • For a sensation to occur a stimulus must excite a receptor – Receptor specificity – Stimulus must be applied to the receptor’s receptive field (the smaller the field the better the brain can localize the stimulus) – Energy of the stimulus must be converted to a graded potential (receptor potential); called transduction – Generator potential of the first order neuron must reach threshold to be transmitted – Strength of stimulus is encoded in frequency (the faster the stronger) – Terminology » Tonic receptors – usually firing at a particular rate constantly; stimulus changes the rate » Phasic receptors – usually off; stimulus turns them on » Adaptation – reduction in sensitivity to a stimulus 6 Sensory Receptors and Sensation – Circuit Level Processing – ascending (sensory) pathways (tracts) • Job is to deliver impulses the correct area of the cerebral cortex • Impulses first goes from the a nerve to the spinal cord, ultimately to either the cerebellum or thalamus (second order neuron) • If the information is going to the cerebral cortex a third order neuron carries it from the thalamus to the appropriate area of the cerebral cortex – Perceptual Level Processing – cerebral cortex, but also along the way – perception is defined by the region of the brain interpreting it not necessarily the stimulus – the brain interprets and projects where in the body the stimulus is coming from 7 Sensory Receptors and Sensation – Main Aspects of Perception • Perceptual Detection • Magnitude Estimation • Spatial Discrimination – two-point discrimination test • Feature Abstraction – interpreting several features of a perception to determine the actual “make-up” of the stimulus • Quality Discrimination – some modalities have different qualities, ex. taste; bitter, sour, sweet, salty • Pattern Recognition – misspelled sheet I handed out 8 Transmission Lines: Nerves and Their Structure and Repair • Nerves and Associated Ganglia – Structure 9 Transmission Lines: Nerves and Their Structure and Repair – Classification • Sensory (afferent) nerves • Motor (efferent) nerves • Mixed nerves – Ganglia 10 Transmission Lines: Nerves and Their Structure and Repair – Regeneration of Nerve Fibers 11 Cranial Nerves • Naming – Use of Roman numerals I – XII – Named according to structures served or function(s) On occasion our trust truck acts funny – very good vehicle anyhow Some say marry money but my brothers say bad business marry money 12 Spinal Nerves • General Features – 31 pairs – Naming 13 Spinal Nerves – Anatomy 14 Spinal Nerves 15 Spinal Nerves • Innervation of Specific Body Regions – Dorsal Rami – supply skin and muscles of posterior trunk – Ventral Rami – anterior trunk and limbs • All but T1 – T12 form plexuses 16 Cervical Plexus 17 Brachial Plexus 18 Skin of the inferior, lateral portion of the shoulder – m uscles of the lateral arm for rotation and abduction 19 Skin of posterior surface of the arm and forearm , lateral 2/3 of back of hand – m uscles for extension of elbow , extends w rist, fingers, thum b, supinates 20 forearm Skin of lateral surface of forearm – m uscles for elbow (flexion) 21 Skin of m edial 1/3 of hand, little finger, and m edial ½ of ring finger– m uscles for w rist (flexion), m ost intrinsic finger m uscles 22 Lateral 2/3 of palm of hand, thum b, index and m iddle finger, and the lateral ½ of ring finger, and dorsal tips of the sam e fingers – m uscles for forearm (pronation), w rist (flexion/abduction), finger (flexion) 23 24 Superior m edial side of thigh – m uscles for: thigh (lateral rotation/adduction), hip (flexion) 25 Anterior and lateral branches supply the anterior and lateral thigh; saphenous branch supplies the m edial leg and foot – m uscles for: thigh (flexion), leg (flexion, extension) Carry inform ation concerning pain and tem perature 26 27 Branches from tibial nerve serve the sole of the foot and lateral and posterior 1/3 of leg and lateral side of foot – m uscles for: thigh (extension/adduction), leg (flexion), foot (plantar flexes), toes 28 (flexes) CaLrrayt etwraol- psouinrfta dcisec orifm kinnaeteio, ng, rperaotp raioncde psteiocno,n pdr etsoseu,r ed,o arnsda lv aibnrta.t itohni rd seonsf aletigon asnd top of foot – m uscles for: thigh (extension), leg 29 (flexion), foot (flexion/eversion), toes (extension) Dermatomes 30 Motor Endings and Motor Activity • Peripheral Motor Endings – Innervation of Skeletal Muscle - neuromuscular junctions – Innvervation of Visceral (Smooth) Muscle and Glands • Possess varicosities that typically contain either acetylcholine or norepinephrine 31 Reflexes • Reflex Arc 32 Spinal Reflexes • Stretch and Golgi Tendon Reflexes – Functional anatomy 33 Spinal Reflexes 34 Spinal Reflexes • Stretch Reflex – Demonstrates reciprocal inhibition – Example is the knee-jerk or patellar reflex • Monosynaptic • Ipsilateral • Gives us information concerning – The status of both the sensory and motor pathway – The status of the spinal cord 35 Spinal Reflexes 36 Spinal Reflexes • Golgi Tendon Reflex – Polysynaptic – Results in reciprocal activation 37 Spinal Reflexes • Flexor (Withdrawl) Reflex/Crossed Extensor Reflex 38 Spinal Reflexes • Superficial Reflexes – Plantar Reflex – blunt object stroked along lateral side of the plantar surface • Test spinal cord segment (L4 – S2) • Integrity of corticospinal tracts • Normal response downward deflection of toes • Abnormal – Babinski’s sign – toes dorsiflex, smaller toes flare laterally – this is normal in children – Abdominal Reflexes - stroke skin on lateral side of abdomen to the side, above or below the umbilicus • Normal – umbilicus should move towards stroked side • Test cord segments (T8 – T12) • Integrity of corticospinal tracts 39.
Recommended publications
  • Retained Neonatal Reflexes | the Chiropractic Office of Dr
    Retained Neonatal Reflexes | The Chiropractic Office of Dr. Bob Apol 12/24/16, 1:56 PM Temper tantrums Hypersensitive to touch, sound, change in visual field Moro Reflex The Moro Reflex is present at 9-12 weeks after conception and is normally fully developed at birth. It is the baby’s “danger signal”. The baby is ill-equipped to determine whether a signal is threatening or not, and will undergo instantaneous arousal. This may be due to sudden unexpected occurrences such as change in head position, noise, sudden movement or change of light or even pain or temperature change. This activates the stress response system of “fight or flight”. If the Moro Reflex is present after 6 months of age, the following signs may be present: Reaction to foods Poor regulation of blood sugar Fatigues easily, if adrenalin stores have been depleted Anxiety Mood swings, tense muscles and tone, inability to accept criticism Hyperactivity Low self-esteem and insecurity Juvenile Suck Reflex This is active together with the “Rooting Reflex” which allows the baby to feed and suck. If this reflex is not sufficiently integrated, the baby will continue to thrust their tongue forward, pushing on the upper jaw and causing an overbite. This by nature affects the jaw and bite position. This may affect: Chewing Difficulties with solid foods Dribbling Rooting Reflex Light touch around the mouth and cheek causes the baby’s head to turn to the stimulation, the mouth to open and tongue extended in preparation for feeding. It is present from birth usually to 4 months.
    [Show full text]
  • The Corneomandibular Reflex1
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.34.3.236 on 1 June 1971. Downloaded from J. Neurol. Neurosurg. Psychiat., 1971, 34, 236-242 The corneomandibular reflex1 ROBERT M. GORDON2 AND MORRIS B. BENDER From the Department of Neurology, the Mount Sinai Hospital, New York, U.S.A. SUMMARY Seven patients are presented in whom a prominent corneomandibular reflex was observed. These patients all had severe cerebral and/or brain-stem disease with altered states of consciousness. Two additional patients with less prominent and inconstant corneomandibular reflexes were seen; one had bulbar amyotrophic lateral sclerosis and one had no evidence of brain disease. The corneomandibular reflex, when found to be prominent, reflects an exaggeration of the normal. Therefore one may consider the corneomandibular hyper-reflexia as possibly due to disease of the corticobulbar system. The corneomandibular reflex consists of an involun- weak bilateral response on a few occasions. This tary contralateral deviation and protrusion of the was a woman with bulbar and spinal amyotrophic lower jaw during corneal stimulation. It is not a lateral sclerosis. The other seven patients hadProtected by copyright. common phenomenon and has been rediscovered prominent and consistently elicited corneo- several times since its initial description by Von mandibular reflexes. The clinical features common to Solder in 1902. It is found mostly in patients with these patients were (1) the presence of bilateral brain-stem or bilateral cerebral lesions who are in corneomandibular reflexes, in some cases more coma or semicomatose. prominent on one side; (2) a depressed state of con- There have been differing opinions as to the sciousness, usually coma; and (3) the presence of incidence, anatomical basis, and clinical significance severe neurological abnormalities, usually motor, of this reflex.
    [Show full text]
  • Normal Plantar Response: Integration of Flexor and Extensor Reflex Components
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.26.1.39 on 1 February 1963. Downloaded from J. Neurol. Neurosurg. Psychiat., 1963, 26, 39 Normal plantar response: integration of flexor and extensor reflex components LENNART GRIMBY From the Department of Neurology, Karolinska Institute, Serafimerlasarettet, Stockholm, Sweden The reflexes elicited by painful stimulation of the the suprasegmental control of the reflex centres, the plantar surface of the foot have been studied receptive field of the reflex is limited to the skin area extensively for a long time and the relation between where it is adequate for protective purposes, viz., the reflexes obtained in normal and in pathological the ball of the great toe. cases has been the subject of considerable debate. An Previous investigations (Eklund et al., 1959; excellent survey of previous investigations is to be Kugelberg et al., 1960) have shown that the main found in the review by Walshe (1956). As in most difference between the electromyographic pattern of studies of human reflexes, the technique commonly a flexor plantar response and that of an extensor used has, however, not permitted an exact deter- plantar response is that the reflex plantar flexion of mination of the latency values of the reflexes, and the great toe is associated with activity in the short it has thus not been possible to judge with certainty hallux flexor and reciprocal inhibition of the guest. Protected by copyright. to what extent the movements studied have been voluntary activity in the short hallux extensor, purely spinal and to what extent of cerebral origin. whereas, conversely, reflex dorsiflexion of the great By means of brief electric stimuli and an electro- toe is accompanied by activity in the short hallux myographic recording technique these latency values extensor and reciprocal inhibition of the voluntary can, however, be exactly determined, and in this way activity in the short hallux flexor.
    [Show full text]
  • Neurologic Assessment Skills for the Acute Medical Surgical Nurse
    on230103.qxd 1/20/2004 12:01 PM Page 3 Neurologic Assessment Skills for the Acute Medical Surgical Nurse Janet T. Crimlisk ▼ Margaret M. Grande Practical and efficient neurologic assessment skills are vital for when neurologic conditions are changing and what acute care nurses. During an acute neurologic event, the should be the nurse’s immediate response? nurse needs a focused assessment of the pertinent history and symptom analysis and an immediate head-to-toe survey, Review of Central Nervous System eliciting any abnormal signs to identify and correctly report the medical problem. When a patient requires routine moni- To identify appropriate assessment information and toring of neurologic signs, the nurse’s role includes a neuro- apply these skills, a brief overview of the central nervous system (CNS) is presented. The CNS consists of the brain, logic assessment, collecting and assimilating that data, inter- which comprises the cerebrum, cerebellum, and brain- preting the patient problem, notifying the physician when stem (see Figure 1). The brain consists of two central appropriate, and documenting that data. This article presents hemispheres, right and left, which form the largest part of an overview of a staff nurse’s neurologic assessment, explains the brain. There are four main lobes: frontal (Broca’s common neurologic tests performed at the bedside, identifies area, judgment, insight, problem solving, and emotion), an efficient way to perform the assessment, and indicates temporal (auditory, comprehension, speech, and taste), what to include and document when “neuro signs” are parietal (sensory and proprioception), and occipital ordered. (vision). In the central part of the cerebrum is the dien- KEY WORDS: Neurologic assessment, Education, Medical surgi- cephalon, which surrounds the third ventricle and forms cal nurse the central core and contains the thalamus and the hypo- thalamus (the autonomic nervous system regulator).
    [Show full text]
  • Physiology and Pathophysiology 2018/2019 Dental Medicine Examination Synopsis in Physiology
    Medical University of Varna Department of Physiology and Pathophysiology 2018/2019 Dental medicine Examination Synopsis in Physiology Theoretical exam 1. Homeostasis. Control systems of the body – characteristics. Negative feedback mechanism. 2. Cell membranes. Transport of substances through cell membranes. 3. Membrane potential. Resting membrane potential of nerves. 4. Nerve action potential. Propagation of the action potential. Conduction velocity. 5. Signal transmission in nerve fibers. Excitation - the process of eliciting the action potential. Threshold for excitation, refractory period. Inhibition of excitability. 6. Organization and functions of the nervous system. Types of synapses. Electrical synapses. 7. Characteristics of transmission in chemical synapses. 8. Synaptic transmitters. Membrane receptors. 9. Generation of postsynaptic potentials. Generation of action potentials in the axon. Neuronal inhibition - types. Neuroglia. 10. Characteristics of postsynaptic potentials. Spatial and temporal summation in neurons. "Facilitation" of neurons. Characteristics of synaptic transmission. 10. Transmission and processing of signals in neuronal circuits. Convergence, divergence, reverberating circuits. Reflexes - types. 11. Organization of the autonomic nervous system. Location of autonomic ganglia. Characteristics of sympathetic and parasympathetic function - transmitters. 12. Characteristics of sympathetic and parasympathetic function - receptors. 13. Sympathetic or parasympathetic tone. Denervation effects. Autonomic reflexes.
    [Show full text]
  • Neuropsychiatry Block Stretch Reflex and Golgi Tendon Reflex
    NeuroPsychiatry Block Stretch reflex and Golgi Tendon Reflex By Prof. Faten zakareia Physiology Department , College of Medicine , King Saud University 2017 Email: [email protected] Ext:52736 NeuroPsychiatryBlock Motor Functions of the Spinal Cord, The cord Reflexes Chapter 55 (Guyton & Hall) -Reference book/Ganong review of medical physiology • Objectives: Upon completion of this lecture, students are expected to : - Describe the stretch reflex and ts icomponents - Describe the structure and function of the muscle spindle - Differentiate between primary and secondary afferent fibres of muscle spindle, Intrafusal nuclear bag &nuclear chain fibers - Differentiate between the Dynamic gamma efferent and Trail endings discharge and their functional role - Differentiate between static and dynamic stretch reflex& damping mechanism - Describe muscle tone and its abnormalities - Disscuss spinal and supraspinal regulation of the stretch reflex - Describe the components of the inverse stretch reflex (golgi tendon reflex)and its function THE STRETCH REFLEX REFLEX STRETCH (MYOTACTIC) REFLEX https://musom.marshall.edu/anatomy/grosshom/allppt/pdf/Spinalreflexes.pdf CLINICAL TEST | RAPID STRETCH OF MUSCLE (TAP ON MUSCLE TENDON) STIMULUS RESPONSE STRETCHED MUSCLE CONTRACT RAPIDLY (I.E. KNEE JERK) SENSORY MUSCLE SPINDLE PRIMARY RECEPTOR SYNAPSES MONOSYNAPTIC INVOLVED EFFECTS ON CONTRACTS (+) SAME MUSCLE AND SYNERGISTIC MUSCLES MUSCLE OTHER EFFECTS RELAXES (-) ANTAGONISTIC MUSCLE FUNCTION AIDS IN MAINTAINING POSTURE, AVOID MUSCLE RUPTURE,COUNTERS SUDDEN
    [Show full text]
  • Overshunting-Associated Myelopathy: Report of 2 Cases
    NEUROSURGICAL FOCUS Neurosurg Focus 41 (3):E16, 2016 Overshunting-associated myelopathy: report of 2 cases Jason Man-kit Ho, MBChB, Hing-Yuen Law, FRCS(SN), Shing-Chau Yuen, FRCS, and Kwong-Yui Yam, FRCS Department of Neurosurgery, Tuen Mun Hospital, Tuen Mun, Hong Kong Special Administrative Region, China The authors present 2 cases of cervical myelopathy produced by engorged vertebral veins due to overshunting. Over­ shunting­associated myelopathy is a rare complication of CSF shunting. Coexisting cervical degenerative disc disease may further increase the difficulty of diagnosing the condition. Neurosurgeons and others who routinely evaluate patients with intracranial shunts should be familiar with this rare but possible diagnosis. http://thejns.org/doi/abs/10.3171/2016.7.FOCUS16179 KEY WOrdS overshunting; myelopathy; hydrocephalus; ventriculoperitoneal shunt VERSHUNTING-ASSOCIATED myelopathy is a rare com- temperature sensation were impaired on the right palm. plication of CSF shunting.4 Few case reports have The patient had an upgoing plantar reflex and ankle clonus been published over the years. Here we add 2 cas- bilaterally. Tandem walking could barely be performed. esO to the literature. T1-weighted Gd-enhanced MRI of the brain and cervi- cal spine revealed diffuse pachymeningeal enhancement Case Reports (Fig. 1 upper) and engorgement of vertebral veins from Case 1 the C-1 to the C-3 level causing cord compression at the History and Presentation corresponding levels (Fig. 2A and B). T2-weighted imag- ing showed signal hyperintensity in the spinal cord (Fig. 3 This 64-year-old woman had undergone ventriculoperi- left) at the C-1 level. Degenerative changes (marginal os- toneal (VP) shunt placement for treatment of hydrocepha- teophytes and disc bulging) were noted at the C5–6 and lus after clipping of a ruptured posterior communicating C6–7 levels, with indentation of the anterior thecal sac.
    [Show full text]
  • THE BABINSKI REFLEX.1 by C
    THE BABINSKI REFLEX.1 By C. Van Epps, M.D. I owe the opportunity to make the following study to my chiefs at the Philadelphia Hospital, Drs. Mills, Dercum, Lloyd and Burr, and to the chief resident physician, Dr. Daniel E. Hughes. The purpose of my investigation was to determine the conditions in which the Babinski reflex is present. The data consisted of one thousand persons classi¬ fied as follows:— Babies and children. ioo Patients in medical wards presenting no ner¬ vous symptoms. 165 Insane patients presenting no organic cerebro¬ spinal disease. 335 Patients suffering from nervous disease but pre¬ senting no symptoms of involvement of the lateral tracts . 213 Hemiplegics and diplegics . 125 Patients having disease of the spinal cord with manifest involvement of the lateral tracts. 62 In health on stroking the sole there follows flexion of the toes with or without movement of the ankle and leg. This reflex is not present in every one, some normal persons hav¬ ing no plantar reflex at all. Babinski discovered that in certain diseases the plantar reflex is altered and claimed that this alteration is constantly present whenever there is “perturbation” of the lateral tracts. He described the alteration as follows: There is extension of the great toe with or without extension and separation of the other toes, the movement being slower than the normal reflex and more readily produced by stroking the outer than the inner side of the sole. In testing for the reflex I used, as a rule, an ordinary blunt tooth-pick; if the sole was very sensitive I used my ‘Read before the Philadelphia Neurological Society, October 22, 1900.
    [Show full text]
  • Clinical Tests and Differential Diagnosis of Cervical Spondylotic Myelopathy 39
    Clinical Tests and Differential Diagnosis of Cervical 05 Spondylotic Myelopathy Jesus Lafuente Introduction MRI, and clinical symptoms is essential for a correct diagnosis. Anterior-posterior width Cervical spondylotic myelopathy (CSM) is reduction, cross-sectional evidence of cord a disabling disease caused by a combina- compression, obliteration of the subarach- tion of mechanical compression and vascu- noid space, and signal intensity changes to lar compromise of the spinal cord. It is the the cord found on MR imaging are consid- most common cause of spinal dysfunction ered the most appropriate parameters for in older patients.1 The onset is often insidi- confirmation of a spinal cord compression ous with long periods of episodic, stepwise myelopathy.4 In some occasions when the progression and may present with different diagnosis is still not clear, the use of other symptoms from one patient to another.2 CSM studies could help, such as diagnostic elec- is a clinical diagnosis that may involve broad- trophysiology and cerebrospinal fluid (CSF) based gait disturbances first, associated with examination. weakness of the legs, and then spasticity.3 As spinal cord degeneration progresses, lower motor neuron findings in the upper extremi- Clinical Tests ties, such as loss of strength, atrophy, and CSM is the most common cause of spinal difficulty in fine finger movements, may cord dysfunction in the world. A meticu- present.3 Additional clinical findings may lous physical examination of patients with include: neck stiffness, shoulder pain, pares- cervical pathology can relatively make the thesia in one or both arms or hands, radicu- distinction between radiculopathy or mye- lopathy, a positive Hoffman and/or Babinski lopathy easy.
    [Show full text]
  • Spinal Reflexes Marte Rydland a Reflex Is a Protective Response to Stimulus That Does Not Require Conciousness Reflexes
    Spinal reflexes Marte Rydland A reflex is a protective response to stimulus that does not require conciousness Reflexes Elements of a reflex arc: 1. Receptor 2. Afferent pathway 3. Integration center 4. Efferent pathway 5. Effector Types of reflexes 1. Stretch reflex → Protects from overstretching 2. Golgi tendon reflex → Protects from over contracting 3. Withdrawal reflex → Protects from potentially harmful stimuli Muscle fibers Types of muscle fibers Extrafusal fibers Intrafusal fibers ▪ Outer layer ▪ Encapsulated in sheaths to form ▪ Provide the force for muscle muscle spindle contraction ▪ Innervated by ɣ-motoneurons ▪ Most of skeletal muscle ▪ Smaller than extrafusal fibers ▪ Innervated by ⍺-motoneurons ▪ Too small to generate force ▪ Attach to tendons ▪ Sensory receptors: Detect the stretch of a muscle Intrafusal fibers – Muscle spindle Nuclear bag fibers Nuclear chain fibers • Have nuclei collected in a "bag" • Have nuclei arranged in series region • Are more numerous than nuclear • Onset of stretch bag fibers • Dynamic changes = LENTGH & • Sustained stretch VELOCITY • Static changes = LENGTH • Annulospiraling endings • Flower spray endings • Innervated by group Ia afferents • Innervated by group Ia + II SLOW afferents RAPID RAPID Renshaw inhibition • Inhibitory interneurons • Between LMN/AMN’s • Negative feedback loop • Removes “noise” • Prevents hyperactive muscle contraction How to move a limb? • Antagonizing muscles must do the opposite • Flexors vs. extensors • Reciprocal innervation • Inhibiting interneurons 1. Stretch reflex (myotatic reflex) Stimulus: stretching of the muscle 1. Intrafusal fiber 2. Type Ia sensory fiber (afferent nerve) 3. Monosynaptic 4. α motor neurons (efferent nerve) 5. Extrafusal muscle fibers = Agonist muscle contracts = Antagonist relaxes Knee jerk reflex 2. Golgi tendon reflex (inverse stretch) Stimulus: contraction of the muscle 1.
    [Show full text]
  • 1985;18:606-10. the Unaffectedside Causesflexion Ofthe Thigh on The
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.9.1163 on 1 September 1988. Downloaded from Guillain-Barrt~syndrome. a model of random conduction bl ock1 6 1163 size of compound sensory or muscle action potentials, 15 Young RR, Cracco RQ. Clinical neurophysiology of and length of nerve segmnent. Neurology 1986;36: conduction in central motor pathways. Ann Neurol 647-52. 1985;18:606-10. 13 Lee GJ, Ashby P, Whiite DG, Aquayo AJ. Analysis of 16 Olsson T. Vascular permeability in the peripheral ner- motor conduction velocity in the human median nerve vous system. In: Dyck PJ, Thomas PK, Lambert EH, by computer stimulation of compound muscle action Bunge R, eds. Peripheral Neuropathy. Philadelphia: potentials. Electroencephalogr Clin Neurophysiol W B Saunders, 1984:579-99. 1975;39:225-37. 17 Dumas M, Schwab ME, Thoenen H. Retrograde axonal 14 Sumner AJ. The physiological basis for symptoms in transport of specific macromolecules as a tool for Guillain-Baffr' syndrome. Ann Neurol 1981l;suppl 9: characterising nerve terminal membranes. J Neurobiol 28-30. 1979;1O: 179-97'. Babinski's Sign Amongst the founders of the celebrated Soci6t6 de Neurologie de Paris were, Pierre Marie, Dejerine, Brissaud and Babinski. Born on 17 November 1857 in the Boulevard Montparnasse, Josef Francois Babinski graduated in Paris, was an intern to Vulpian and became chef de clinique under Charcot in 1885. He failed to secure Charcot's as post (largely the result of an guest. Protected by copyright. internecine dispute between Charcot and Bouchard), but from 1880 to 1927 he headed the neurological, strictly male clinic at the H6pital de la Pitie' where both Charcot and Vulpian had previously worked.
    [Show full text]
  • The Plantar Reflex
    THE PLANTAR REFLEX a historical, clinical and electromyographic study From the Department of Neurology, Academic Hospital 'Dijkzigt', Rotterdam, The Netherlands THE PLANTAR REFLEX A HISTORICAL, CLINICAL AND ELECTROMYOGRAPHIC STUDY PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE GENEESKUNDE AAN DE ERASMUS UNIVERSITEIT TE ROTTERDAM OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. B. LEIJNSE EN VOLGENS BESLU!T VAN HET COLLEGE VAN DEKANEN. DE OPENBARE VERDED!GING ZAL PLAATS VINDEN OP WOENSDAG 16 NOVEMBER 1977 DES NAMIDDAGS TE 4.15 UUR PREC!ES DOOR JAN VAN GIJN GEBOREN TE GELDERMALSEN 1977 KRIPS REPRO - MEPPEL PROMOTOR: DR. H. VAN CREVEL CO-PROMOTOR: PROF. DR. A. STAAL CO-REFERENTEN: PROF. DR. H. G. ]. M. KUYPERS PROF. DR. P. E. VOORHOEVE Aan mijn ouders Aan Carien, Maarten en Willem CONTENTS page GENERAL INTRODUCTION 15 CHAPTER I HISTORY OF THE PLANTAR REFLEX AS A CLINICAL SIGN DISCOVERY - the plantar reflex before Babinski 19 - the toe phenomenon . 21 - Joseph Babinski and his work 24 ACCEPTANCE - the pyramidal syndrome before the toe reflex 26 - confirmation . 26 - a curious eponym in Holland 28 - false positive findings? 29 - false negative findings 29 FLEXION AND EXTENSION SYNERGIES - the Babinski sign as part of a flexion synergy . 31 - opposition from Babinski and others . 33 - ipsilateral limb extension with downgoing toes versus the normal plantar response . 36 - crossed toe responses . 36 - tonic plantar flexion of the toes in hemiplegia 37 RIVAL SIGNS - confusion . 39 - different sites of excitation 39 - stretch reflexes of the toe muscles 41 - spontaneous or associated dorsiflexion of the great toe 42 - effects other than in the toes after plantar stimulation 42 THE PLANTAR RESPONSE IN INFANTS - contradictory findings 43 - the grasp reflex of the foot .
    [Show full text]