Electromagnetic Modeling with Complex Dielectrics: a Partial Element Equivalent Circuit Approach

Total Page:16

File Type:pdf, Size:1020Kb

Electromagnetic Modeling with Complex Dielectrics: a Partial Element Equivalent Circuit Approach DOCTORAL T H E SIS Department of Computer Science, Electrical and Space Engineering Division of Embedded Internet Systems Lab Electromagnetic Modeling with ISSN 1402-1544 Modeling with Complex Dielectrics HartmanAndreas Electromagnetic ISBN 978-91-7790-302-4 (print) ISBN 978-91-7790-303-1 (pdf) Complex Dielectrics Luleå University of Technology 2019 A Partial Element Equivalent Circuit Approach Andreas Hartman Industrial Electronics Electromagnetic Modeling with Complex Dielectrics: A Partial Element Equivalent Circuit Approach Andreas Hartman Dept. of Computer Science and Electrical Engineering Lule˚aUniversity of Technology Lule˚a,Sweden Supervisors: Jonas Ekman, Jerker Delsing Printed by Luleå University of Technology, Graphic Production 2019 ISSN 1402-1544 ISBN 978-91-7790-302-4 (print) ISBN 978-91-7790-303-1 (pdf) Luleå 2019 www.ltu.se To my family iii iv Abstract Wireless communication systems have become an integral part of many complex systems in diverse areas of society, for the exchange of data in business and industrial settings. With the advent of Internet of Things (IoT) and wireless sensor network architectures, the tighter demands on interoperability between different devices are putting heavy re- quirements their ability to exchange data wirelessly among them reliably. However, many environments pose a challenging setting for a wireless communication system to operate within. Consequently, electromagnetic modeling could be used as a crucial part of the analysis and design of a wireless communication system in these environments. In this thesis, means for the electromagnetic modeling of complex materials are con- sidered. Specifically, the incorporation of dielectrics that exhibit loss, dispersion, and anisotropic properties into electromagnetic codes is addressed. The work has been exe- cuted within the partial element equivalent circuit (PEEC) method framework. First, a PEEC implementation that incorporates dispersive and lossy dielectrics, rep- resented by equivalent circuit models explicitly included in the PEEC equations, is devel- oped. This provides a descriptor system form of the PEEC model that includes dielectrics with permittivities that can be represented as finite sums of Debye and Lorentz permittiv- ity models and can be integrated by any time integration scheme of choice. Additionally, the description admits the application of model-order reduction techniques, reducing the model complexity of a large-scale PEEC model that consists of frequency-dispersive dielectrics. Next, the incorporation of anisotropic dielectrics in PEEC simulations is considered. A PEEC cell for anisotropic dielectrics, with a general permittivity tensor, is derived. It turns out to be an extension of the standard dielectric PEEC cell for an isotropic dielectric by adding a voltage-dependent current source in parallel with the excess capacitance of the dielectric cell. A cross-coupling excess capacitance concept that defines the dependent current source for the anisotropic PEEC cell is defined and given for orthogonal PEEC meshes. As a result, the PEEC cell for an anisotropic dielectric is possible to extend to handle lossy and dispersive anisotropic dielectrics straightforwardly. The developed PEEC model has been applied to model a patch antenna mounted on an anisotropic sub- strate. The simulation results are in agreement with other simulation technique results. Consequently, the anisotropic model permits electromagnetic modeling of structures and devices that consist of a broader class of materials. The modeling of dielectrics in different ambient temperature conditions is also con- sidered for the PEEC analysis of its impact on antennas. Dielectrics with temperature- dependent permittivity have been modeled with PEEC by standard approaches found in v the literature. This has proved useful for frequency-domain simulations in PEEC. The utility has been demonstrated by investigating the impact due to temperature-dependent dielectrics on printed antennas. These types of investigations could provide valuable in- formation in the design of printed antennas in harsh environments. Finally, the problem of designing magneto-dielectric materials that intrinsically pro- vide distortionless propagation for TEM mode signals is investigated. The frequency- dependent permittivity and permeability of a slab are related to the per-unit length (p.u.l.) parameters of a two-conductor transmission line. The p.u.l. parameters are specified to approximate the Heaviside condition in a specified and finite frequency inter- val, while simultaneously enforcing that the corresponding permittivity and permeability represent a passive material. Consequently, the passivity condition ensures the designed material is possible to realize in practice while the Heaviside condition secures that the material is distortionless. The design method has been employed to design a passive material that approximates the Heaviside condition in a narrow frequency interval. Veri- fication in both time and frequency domains indicates that the designed material closely resembles a distortionless material in the specified frequency interval. These results in- dicate that an approximation of the Heaviside condition could be a potential aid in the design of distortionless materials for bandlimited applications. Further investigations on design method improvements, limitations on the approximation in terms of both accu- racy and bandwidth, and the construction of such materials in practice could lead to new distortionless cable or material designs. vi Contents Part I 1 Chapter 1 { Thesis Introduction 3 1.1 Background . .3 1.2 Motivation . .4 1.3 Related Work . .6 1.4 Thesis Outline . .9 Chapter 2 { Electromagnetic Simulation and the Modeling of Ma- terials' Electromagnetic Properties 11 2.1 Maxwell's Equations . 11 2.2 Constitutive Relations for the Modeling of Materials in Maxwell's Equations 12 2.3 Dispersion and Loss . 16 2.4 Causality and Passivity . 17 2.5 Electromagnetic Mixtures . 19 2.6 Influence of Other Factors' on Permittivity . 21 2.7 Methods for Solving Maxwell's Equations . 23 Chapter 3 { The Partial Element Equivalent Circuit Method 29 3.1 The PEEC Method . 29 3.2 Dielectrics in the PEEC Method . 35 3.3 PEEC Circuit Equations . 46 Chapter 4 { Distortionless Propagation along Transmission Lines and Magneto-Dielectric Slabs 51 4.1 The Material Slab Setup and the Corresponding Transmission Line Model 51 4.2 The Heaviside Condition and Distortionless Propagation . 53 4.3 Approximation of the Heaviside Condition . 54 Chapter 5 { Thesis Summary 57 5.1 Contributions . 57 5.2 Conclusions . 60 5.3 Answers to the Research Questions . 61 5.4 Future Work . 63 References 65 vii Part II 77 Paper A 79 1 Introduction . 81 2 Modelling of Dispersive and Lossy Dielectrics . 82 3 Descriptor form of PEEC models to incorporate dispersive and lossy di- electrics . 86 4 Numerical examples . 89 5 Conclusions . 91 Paper B 93 1 Introduction . 95 2 The EFIE in an Anisotropic Dielectric Medium . 96 3 The PEEC cell for an Anisotropic Dielectric Volume Cell . 100 4 PEEC Matrix Model Equations for the Anisotropic Case . 103 5 Numerical Examples . 108 6 Conclusions . 110 Paper C 113 1 Introduction . 115 2 The Permittivity Model and Means to Model Temperature-Dependent Per- mittivity . 116 3 Temperature-dependent Permittivity . 117 4 Dielectric Mixing Rules . 118 5 The PEEC Method . 118 6 Numerical Examples . 119 7 Conclusions . 125 Paper D 129 1 Introduction . 131 2 Transmission Line Representation of a Slab and The Heaviside condition 133 3 Permittivity and Permeability Properties of Passive Materials . 135 4 Design Procedure for a Material to Approximate the Heaviside condition 136 5 Numerical Example . 140 6 Conclusions . 146 viii Acknowledgments This thesis has emerged through the support of several people to whom I would like to express my gratitude. First, I would like to thank my supervisors Jonas Ekman and Jerker Delsing for their guidance and support throughout this thesis project. I would also like to express my sincere gratitude to Prof. Giulio Antonini for his support and interest in the work, and his invaluable care to share his knowledge. I am also thankful for his hospitality during my visits to his research group in L'Aquila. In addition, I would like to thank my former supervisor Jonas Gustafsson for his help when I arrived to Lule˚a, and his support in the beginning of my studies. I would also like to thank the people at SRT, and personally Maria De Lauretis, the people at the SKF-UTC, and at SKF for their insights and help in the project, especially Defeng Lang for all interesting and fruitful discussions, and also Per-Erik Larsson for his support in the project. Next, I would like to acknowledge the financial support from SKF and the Arrowhead project. Finally, I would like to thank my family and friends who have always supported and believed in me. Lule˚a,February 2019 Andreas Hartman ix x Part I 1 2 Chapter 1 Thesis Introduction 1.1 Background Today, electromagnetic systems and devices play an important role in daily life. They form the basis of several industrial and business applications. Wireless communication systems are an integral part of the communication networks used to exchange information in business, personal and industrial settings, i.e., mobile networks and sensor networks. Technologies such as the Internet of Things (IoT) and wireless sensor networks (WSNs) are providing increasing interoperability among different devices, placing heavier require- ments on their
Recommended publications
  • Retarded Potentials and Power Emission by Accelerated Charges
    Alma Mater Studiorum Universita` di Bologna · Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea in Fisica Classical Electrodynamics: Retarded Potentials and Power Emission by Accelerated Charges Relatore: Presentata da: Prof. Roberto Zucchini Mirko Longo Anno Accademico 2015/2016 1 Sommario. L'obiettivo di questo lavoro ´equello di analizzare la potenza emes- sa da una carica elettrica accelerata. Saranno studiati due casi speciali: ac- celerazione lineare e accelerazione circolare. Queste sono le configurazioni pi´u frequenti e semplici da realizzare. Il primo passo consiste nel trovare un'e- spressione per il campo elettrico e il campo magnetico generati dalla carica. Questo sar´areso possibile dallo studio della distribuzione di carica di una sor- gente puntiforme e dei potenziali che la descrivono. Nel passo successivo verr´a calcolato il vettore di Poynting per una tale carica. Useremo questo risultato per trovare la potenza elettromagnetica irradiata totale integrando su tutte le direzioni di emissione. Nell'ultimo capitolo, infine, faremo uso di tutto ci´oche ´e stato precedentemente trovato per studiare la potenza emessa da cariche negli acceleratori. 4 Abstract. This paper’s goal is to analyze the power emitted by an accelerated electric charge. Two special cases will be scrutinized: the linear acceleration and the circular acceleration. These are the most frequent and easy to realize configurations. The first step consists of finding an expression for electric and magnetic field generated by our charge. This will be achieved by studying the charge distribution of a point-like source and the potentials that arise from it. The following step involves the computation of the Poynting vector.
    [Show full text]
  • Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings
    coatings Article Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings Artem Prokopchuk 1,*, Ivan Zozulia 1,*, Yurii Didenko 2 , Dmytro Tatarchuk 2 , Henning Heuer 1,3 and Yuriy Poplavko 2 1 Institute of Electronic Packaging Technology, Technische Universität Dresden, 01069 Dresden, Germany; [email protected] 2 Department of Microelectronics, National Technical University of Ukraine, 03056 Kiev, Ukraine; [email protected] (Y.D.); [email protected] (D.T.); [email protected] (Y.P.) 3 Department of Systems for Testing and Analysis, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany * Correspondence: [email protected] (A.P.); [email protected] (I.Z.); Tel.: +49-3514-633-6426 (A.P. & I.Z.) Abstract: The suppression of unnecessary radio-electronic noise and the protection of electronic devices from electromagnetic interference by the use of pliable highly microwave radiation absorbing composite materials based on polymers or rubbers filled with conductive and magnetic fillers have been proposed. Since the working frequency bands of electronic devices and systems are rapidly expanding up to the millimeter wave range, the capabilities of absorbing and shielding composites should be evaluated for increasing operating frequency. The point is that the absorption capacity of conductive and magnetic fillers essentially decreases as the frequency increases. Therefore, this Citation: Prokopchuk, A.; Zozulia, I.; paper is devoted to the absorbing capabilities of composites filled with high-loss dielectric fillers, in Didenko, Y.; Tatarchuk, D.; Heuer, H.; which absorption significantly increases as frequency rises, and it is possible to achieve the maximum Poplavko, Y.
    [Show full text]
  • Arxiv:Physics/0303103V3
    Comment on ‘About the magnetic field of a finite wire’∗ V Hnizdo National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA Abstract. A flaw is pointed out in the justification given by Charitat and Graner [2003 Eur. J. Phys. 24, 267] for the use of the Biot–Savart law in the calculation of the magnetic field due to a straight current-carrying wire of finite length. Charitat and Graner (CG) [1] apply the Amp`ere and Biot-Savart laws to the problem of the magnetic field due to a straight current-carrying wire of finite length, and note that these laws lead to different results. According to the Amp`ere law, the magnitude B of the magnetic field at a perpendicular distance r from the midpoint along the length 2l of a wire carrying a current I is B = µ0I/(2πr), while the Biot–Savart law gives this quantity as 2 2 B = µ0Il/(2πr√r + l ) (the right-hand side of equation (3) of [1] for B cannot be correct as sin α on the left-hand side there must equal l/√r2 + l2). To explain the fact that the Amp`ere and Biot–Savart laws lead here to different results, CG say that the former is applicable only in a time-independent magnetostatic situation, whereas the latter is ‘a general solution of Maxwell–Amp`ere equations’. A straight wire of finite length can carry a current only when there is a current source at one end of the wire and a curent sink at the other end—and this is possible only when there are time-dependent net charges at both ends of the wire.
    [Show full text]
  • Metamaterials and the Landau–Lifshitz Permeability Argument: Large Permittivity Begets High-Frequency Magnetism
    Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism Roberto Merlin1 Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 Edited by Federico Capasso, Harvard University, Cambridge, MA, and approved December 4, 2008 (received for review August 26, 2008) Homogeneous composites, or metamaterials, made of dielectric or resonators, have led to a large body of literature devoted to metallic particles are known to show magnetic properties that con- metamaterials magnetism covering the range from microwave to tradict arguments by Landau and Lifshitz [Landau LD, Lifshitz EM optical frequencies (12–16). (1960) Electrodynamics of Continuous Media (Pergamon, Oxford, UK), Although the magnetic behavior of metamaterials undoubt- p 251], indicating that the magnetization and, thus, the permeability, edly conforms to Maxwell’s equations, the reason why artificial loses its meaning at relatively low frequencies. Here, we show that systems do better than nature is not well understood. Claims of these arguments do not apply to composites made of substances with ͌ ͌ strong magnetic activity are seemingly at odds with the fact that, Im ␧S ϾϾ ␭/ഞ or Re ␧S ϳ ␭/ഞ (␧S and ഞ are the complex permittivity ␭ ϾϾ ഞ other than magnetically ordered substances, magnetism in na- and the characteristic length of the particles, and is the ture is a rather weak phenomenon at ambient temperature.* vacuum wavelength). Our general analysis is supported by studies Moreover, high-frequency magnetism ostensibly contradicts of split rings, one of the most common constituents of electro- well-known arguments by Landau and Lifshitz that the magne- magnetic metamaterials, and spherical inclusions.
    [Show full text]
  • The Fine Structure of Weber's Hydrogen Atom: Bohr–Sommerfeld Approach
    Z. Angew. Math. Phys. (2019) 70:105 c 2019 Springer Nature Switzerland AG 0044-2275/19/040001-12 published online June 21, 2019 Zeitschrift f¨ur angewandte https://doi.org/10.1007/s00033-019-1149-4 Mathematik und Physik ZAMP The fine structure of Weber’s hydrogen atom: Bohr–Sommerfeld approach Urs Frauenfelder and Joa Weber Abstract. In this paper, we determine in second order in the fine structure constant the energy levels of Weber’s Hamiltonian that admit a quantized torus. Our formula coincides with the formula obtained by Wesley using the Schr¨odinger equation for Weber’s Hamiltonian. We follow the historical approach of Sommerfeld. This shows that Sommerfeld could have discussed the fine structure of the hydrogen atom using Weber’s electrodynamics if he had been aware of the at-his-time-already- forgotten theory of Wilhelm Weber (1804–1891). Mathematics Subject Classification. 53Dxx, 37J35, 81S10. Keywords. Semiclassical quantization, Integrable system, Hamiltonian system. Contents 1. Introduction 1 2. Weber’s Hamiltonian 3 3. Quantized tori 4 4. Bohr–Sommerfeld quantization 6 Acknowledgements 7 A. Weber’s Lagrangian and delayed potentials 8 B. Proton-proton system—Lorentzian metric 10 References 10 1. Introduction Although Weber’s electrodynamics was highly praised by Maxwell [22,p.XI],seealso[4, Preface],, it was superseded by Maxwell’s theory and basically forgotten. In contrast to Maxwell’s theory, which is a field theory, Weber’s theory is a theory of action-at-a-distance, like Newton’s theory. Weber’s force law can be used to explain Amp`ere’s law and Faraday’s induction law; see [4, Ch.
    [Show full text]
  • Weber's Law and Mach's Principle
    Weber's Law and Mach's Principle Andre K. T. Assis 1. Introduction Recently we applied a Weber's force law for gravitation to implement quantitatively Mach's Principle (Assis 1989, 1992a). In this work we present a briefreview of Weher's electrodynamics and analyze in greater detail the compliance of a Weber's force law for gravitation with Mach's Principle. 2. Weber's Electrodynamics In this section we discuss Weber's original work as applied to electro­ magnetism. For detailed references of Weber's electrodynamics, see (Assis 1992b, 1994). In order to unify electrostatics (Coulomb's force, Gauss's law) with electrodynamics (Ampere's force between current elements), W. Weber proposed in 1846 that the force exerted by an electrical charge q2 on another ql should be given by (using vectorial notation and in the International System of Units): (1) In this equation, (;0=8.85'10- 12 Flm is the permittivity of free space; the position vectors of ql and qz are r 1 and r 2, respectively; the distance between the charges is r lZ == Ir l - rzl '" [(Xl -XJ2 + (yj -yJZ + (Zl -ZJ2j112; r12=(r) -r;JlrI2 is the unit vector pointing from q2 to ql; the radial velocity between the charges is given by fIZ==drlzfdt=rI2'vIZ; and the Einstein Studies, vol. 6: Mach's Principle: From Newton's Bucket to Quantum Gravity, pp. 159-171 © 1995 Birkhliuser Boston, Inc. Printed in the United States. 160 Andre K. T. Assis radial acceleration between the charges is [VIZ" VIZ - (riZ "VIZ)2 + r lz " a 12J r" where drlz dvlz dTI2 rIZ=rl-rl , V1l = Tt' a'l=Tt= dt2· Moreover, C=(Eo J4J)"'!12 is the ratio of electromagnetic and electrostatic units of charge %=41f·1O-7 N/Al is the permeability of free space).
    [Show full text]
  • Measurement of Dielectric Material Properties Application Note
    with examples examples with solutions testing practical to show written properties. dielectric to the s-parameters converting for methods shows Italso analyzer. a network using materials of properties dielectric the measure to methods the describes note The application | | | | Products: Note Application Properties Material of Dielectric Measurement R&S R&S R&S R&S ZNB ZNB ZVT ZVA ZNC ZNC Another application note will be will note application Another <Application Note> Kuek Chee Yaw 04.2012- RAC0607-0019_1_4E Table of Contents Table of Contents 1 Overview ................................................................................. 3 2 Measurement Methods .......................................................... 3 Transmission/Reflection Line method ....................................................... 5 Open ended coaxial probe method ............................................................ 7 Free space method ....................................................................................... 8 Resonant method ......................................................................................... 9 3 Measurement Procedure ..................................................... 11 4 Conversion Methods ............................................................ 11 Nicholson-Ross-Weir (NRW) .....................................................................12 NIST Iterative...............................................................................................13 New non-iterative .......................................................................................14
    [Show full text]
  • Chapter 6. Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws
    Chapter 6. Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws 6.1 Displacement Current The magnetic field due to a current distribution satisfies Ampere’s law, (5.45) Using Stokes’s theorem we can transform this equation into an integral form: ∮ ∫ (5.47) We shall examine this law, show that it sometimes fails, and find a generalization that is always valid. Magnetic field near a charging capacitor loop C Fig 6.1 parallel plate capacitor Consider the circuit shown in Fig. 6.1, which consists of a parallel plate capacitor being charged by a constant current . Ampere’s law applied to the loop C and the surface leads to ∫ ∫ (6.1) If, on the other hand, Ampere’s law is applied to the loop C and the surface , we find (6.2) ∫ ∫ Equations 6.1 and 6.2 contradict each other and thus cannot both be correct. The origin of this contradiction is that Ampere’s law is a faulty equation, not consistent with charge conservation: (6.3) ∫ ∫ ∫ ∫ 1 Generalization of Ampere’s law by Maxwell Ampere’s law was derived for steady-state current phenomena with . Using the continuity equation for charge and current (6.4) and Coulombs law (6.5) we obtain ( ) (6.6) Ampere’s law is generalized by the replacement (6.7) i.e., (6.8) Maxwell equations Maxwell equations consist of Eq. 6.8 plus three equations with which we are already familiar: (6.9) 6.2 Vector and Scalar Potentials Definition of and Since , we can still define in terms of a vector potential: (6.10) Then Faradays law can be written ( ) The vanishing curl means that we can define a scalar potential satisfying (6.11) or (6.12) 2 Maxwell equations in terms of vector and scalar potentials and defined as Eqs.
    [Show full text]
  • Physics 115 Lightning Gauss's Law Electrical Potential Energy Electric
    Physics 115 General Physics II Session 18 Lightning Gauss’s Law Electrical potential energy Electric potential V • R. J. Wilkes • Email: [email protected] • Home page: http://courses.washington.edu/phy115a/ 5/1/14 1 Lecture Schedule (up to exam 2) Today 5/1/14 Physics 115 2 Example: Electron Moving in a Perpendicular Electric Field ...similar to prob. 19-101 in textbook 6 • Electron has v0 = 1.00x10 m/s i • Enters uniform electric field E = 2000 N/C (down) (a) Compare the electric and gravitational forces on the electron. (b) By how much is the electron deflected after travelling 1.0 cm in the x direction? y x F eE e = 1 2 Δy = ayt , ay = Fnet / m = (eE ↑+mg ↓) / m ≈ eE / m Fg mg 2 −19 ! $2 (1.60×10 C)(2000 N/C) 1 ! eE $ 2 Δx eE Δx = −31 Δy = # &t , v >> v → t ≈ → Δy = # & (9.11×10 kg)(9.8 N/kg) x y 2" m % vx 2m" vx % 13 = 3.6×10 2 (1.60×10−19 C)(2000 N/C)! (0.01 m) $ = −31 # 6 & (Math typos corrected) 2(9.11×10 kg) "(1.0×10 m/s)% 5/1/14 Physics 115 = 0.018 m =1.8 cm (upward) 3 Big Static Charges: About Lightning • Lightning = huge electric discharge • Clouds get charged through friction – Clouds rub against mountains – Raindrops/ice particles carry charge • Discharge may carry 100,000 amperes – What’s an ampere ? Definition soon… • 1 kilometer long arc means 3 billion volts! – What’s a volt ? Definition soon… – High voltage breaks down air’s resistance – What’s resistance? Definition soon..
    [Show full text]
  • Presenting Electromagnetic Theory in Accordance with the Principle of Causality Oleg D Jefimenko
    Faculty Scholarship 2004 Presenting electromagnetic theory in accordance with the principle of causality Oleg D Jefimenko Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Digital Commons Citation Jefimenko, Oleg D, "Presenting electromagnetic theory in accordance with the principle of causality" (2004). Faculty Scholarship. 290. https://researchrepository.wvu.edu/faculty_publications/290 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. INSTITUTE OF PHYSICS PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 25 (2004) 287–296 PII: S0143-0807(04)69749-2 Presenting electromagnetic theory in accordance with the principle of causality Oleg D Jefimenko Physics Department, West Virginia University, PO Box 6315, Morgantown, WV 26506-6315, USA Received 1 October 2003 Published 28 January 2004 Online at stacks.iop.org/EJP/25/287 (DOI: 10.1088/0143-0807/25/2/015) Abstract Amethod of presenting electromagnetic theory in accordance with the principle of causality is described. Two ‘causal’ equations expressing time-dependent electric and magnetic fields in terms of their causative sources by means of retarded integrals are used as the fundamental electromagnetic equations. Maxwell’s equations are derived from these ‘causal’ equations. Except for the fact that Maxwell’s equations appear as derived equations, the presentation is completely compatible with Maxwell’s electromagnetic theory. An important consequence of this method of presentation is that it offers new insights into the cause-and-effect relations in electromagnetic phenomena and results in simpler derivations of certain electromagnetic equations.
    [Show full text]
  • PHYS 352 Electromagnetic Waves
    Part 1: Fundamentals These are notes for the first part of PHYS 352 Electromagnetic Waves. This course follows on from PHYS 350. At the end of that course, you will have seen the full set of Maxwell's equations, which in vacuum are ρ @B~ r~ · E~ = r~ × E~ = − 0 @t @E~ r~ · B~ = 0 r~ × B~ = µ J~ + µ (1.1) 0 0 0 @t with @ρ r~ · J~ = − : (1.2) @t In this course, we will investigate the implications and applications of these results. We will cover • electromagnetic waves • energy and momentum of electromagnetic fields • electromagnetism and relativity • electromagnetic waves in materials and plasmas • waveguides and transmission lines • electromagnetic radiation from accelerated charges • numerical methods for solving problems in electromagnetism By the end of the course, you will be able to calculate the properties of electromagnetic waves in a range of materials, calculate the radiation from arrangements of accelerating charges, and have a greater appreciation of the theory of electromagnetism and its relation to special relativity. The spirit of the course is well-summed up by the \intermission" in Griffith’s book. After working from statics to dynamics in the first seven chapters of the book, developing the full set of Maxwell's equations, Griffiths comments (I paraphrase) that the full power of electromagnetism now lies at your fingertips, and the fun is only just beginning. It is a disappointing ending to PHYS 350, but an exciting place to start PHYS 352! { 2 { Why study electromagnetism? One reason is that it is a fundamental part of physics (one of the four forces), but it is also ubiquitous in everyday life, technology, and in natural phenomena in geophysics, astrophysics or biophysics.
    [Show full text]
  • Chapter 10: Potentials and Fields Example 10.1
    Chapter 10: Potentials and Fields Scalar and Vector Potentials 10.1 The Potential Formulation 10.1.1 Scalar and Vector Potentials In the electrodynamics, In the electrostatics and magnetostatics, 1 ∂B (i) ∇⋅EE =ρ (iii) ∇× =− 1 ε ∂t (i) ∇⋅EE =ρ (iii) ∇× =0 0 ε0 ∂E (ii) ∇⋅BBJ =0 (iV) ∇× =µµε000 + (ii) ∇⋅BBJ =0 (iV) ∇× =µ0 ∂t How do we express the fields in terms of scalar and vector the electric field and magnetic field can be expressed using potentials? potential: 1 E =−∇VV −∇2 = ρ B remains divergence, so we can still write, BA=∇× ε0 Putting this into Faraday’s law (iii) yields, BA=∇× ∇×( ∇×A ) =µ J 0 ∂∂∂AA 22 ∇×EA =−() ∇× =∇× () − ⇒ ∇×( E + )0 = ∇×( ∇×A ) =∇ ( ∇⋅ A ) −∇ AJ =µµ00 ⇒ −∇ AJ = ∂∂∂ttt ∂A If A 0. 1 E +=−∇V 2 ∇⋅ = ∂t Scalar and Vector Potentials Example 10.1 ∂A Find the charge and current distributions that would give rise BA=∇× E =−∇V − ∂t to the potentials. 1 ∂ 1 µ0k (||)ct− x 2 zˆ for |xct |< (i) ∇⋅E = ρ −∇2VA −() ∇ ⋅ = ρ V ==0, A 4c ε 0 ∂t ε0 0 for |xct |> ∂E ∂∂V 2A Where k is a constant, and c is the speed of light. (iV) ∇×BJ =µµε + ∇×() ∇×AJ =µµε − ∇ () − µε 000 000 002 ∂ ∂t ∂tt∂ Solution: ρε=−() ∇⋅A 0 ∂t 2 We can further yields. 112 ∂ A JA=− ∇ −µε00 2 + ∇() ∇⋅ A 2 ∂ 1 µµ∂t ∇+V () ∇⋅=−A ρ 00 ∂t ε0 ∂A ∂Ax y ∂Az 2 ∇⋅A = + + =0 2 ∂∂A V ∂∂∂xyz ∇−AAJµ00εµεµ2 −∇∇⋅+ 00 =− 0 ∂∂tt ∂∂∂222 µ k ρ = 0 ∇=2Azz() + +A ˆˆ =0 These two equations contain all the information in Maxwell’s ∂∂∂x222y zcz 4 J = 0 equations.
    [Show full text]