Electromagnetic Modeling with Complex Dielectrics: a Partial Element Equivalent Circuit Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retarded Potentials and Power Emission by Accelerated Charges
Alma Mater Studiorum Universita` di Bologna · Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea in Fisica Classical Electrodynamics: Retarded Potentials and Power Emission by Accelerated Charges Relatore: Presentata da: Prof. Roberto Zucchini Mirko Longo Anno Accademico 2015/2016 1 Sommario. L'obiettivo di questo lavoro ´equello di analizzare la potenza emes- sa da una carica elettrica accelerata. Saranno studiati due casi speciali: ac- celerazione lineare e accelerazione circolare. Queste sono le configurazioni pi´u frequenti e semplici da realizzare. Il primo passo consiste nel trovare un'e- spressione per il campo elettrico e il campo magnetico generati dalla carica. Questo sar´areso possibile dallo studio della distribuzione di carica di una sor- gente puntiforme e dei potenziali che la descrivono. Nel passo successivo verr´a calcolato il vettore di Poynting per una tale carica. Useremo questo risultato per trovare la potenza elettromagnetica irradiata totale integrando su tutte le direzioni di emissione. Nell'ultimo capitolo, infine, faremo uso di tutto ci´oche ´e stato precedentemente trovato per studiare la potenza emessa da cariche negli acceleratori. 4 Abstract. This paper’s goal is to analyze the power emitted by an accelerated electric charge. Two special cases will be scrutinized: the linear acceleration and the circular acceleration. These are the most frequent and easy to realize configurations. The first step consists of finding an expression for electric and magnetic field generated by our charge. This will be achieved by studying the charge distribution of a point-like source and the potentials that arise from it. The following step involves the computation of the Poynting vector. -
Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings
coatings Article Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings Artem Prokopchuk 1,*, Ivan Zozulia 1,*, Yurii Didenko 2 , Dmytro Tatarchuk 2 , Henning Heuer 1,3 and Yuriy Poplavko 2 1 Institute of Electronic Packaging Technology, Technische Universität Dresden, 01069 Dresden, Germany; [email protected] 2 Department of Microelectronics, National Technical University of Ukraine, 03056 Kiev, Ukraine; [email protected] (Y.D.); [email protected] (D.T.); [email protected] (Y.P.) 3 Department of Systems for Testing and Analysis, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany * Correspondence: [email protected] (A.P.); [email protected] (I.Z.); Tel.: +49-3514-633-6426 (A.P. & I.Z.) Abstract: The suppression of unnecessary radio-electronic noise and the protection of electronic devices from electromagnetic interference by the use of pliable highly microwave radiation absorbing composite materials based on polymers or rubbers filled with conductive and magnetic fillers have been proposed. Since the working frequency bands of electronic devices and systems are rapidly expanding up to the millimeter wave range, the capabilities of absorbing and shielding composites should be evaluated for increasing operating frequency. The point is that the absorption capacity of conductive and magnetic fillers essentially decreases as the frequency increases. Therefore, this Citation: Prokopchuk, A.; Zozulia, I.; paper is devoted to the absorbing capabilities of composites filled with high-loss dielectric fillers, in Didenko, Y.; Tatarchuk, D.; Heuer, H.; which absorption significantly increases as frequency rises, and it is possible to achieve the maximum Poplavko, Y. -
Arxiv:Physics/0303103V3
Comment on ‘About the magnetic field of a finite wire’∗ V Hnizdo National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA Abstract. A flaw is pointed out in the justification given by Charitat and Graner [2003 Eur. J. Phys. 24, 267] for the use of the Biot–Savart law in the calculation of the magnetic field due to a straight current-carrying wire of finite length. Charitat and Graner (CG) [1] apply the Amp`ere and Biot-Savart laws to the problem of the magnetic field due to a straight current-carrying wire of finite length, and note that these laws lead to different results. According to the Amp`ere law, the magnitude B of the magnetic field at a perpendicular distance r from the midpoint along the length 2l of a wire carrying a current I is B = µ0I/(2πr), while the Biot–Savart law gives this quantity as 2 2 B = µ0Il/(2πr√r + l ) (the right-hand side of equation (3) of [1] for B cannot be correct as sin α on the left-hand side there must equal l/√r2 + l2). To explain the fact that the Amp`ere and Biot–Savart laws lead here to different results, CG say that the former is applicable only in a time-independent magnetostatic situation, whereas the latter is ‘a general solution of Maxwell–Amp`ere equations’. A straight wire of finite length can carry a current only when there is a current source at one end of the wire and a curent sink at the other end—and this is possible only when there are time-dependent net charges at both ends of the wire. -
Metamaterials and the Landau–Lifshitz Permeability Argument: Large Permittivity Begets High-Frequency Magnetism
Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism Roberto Merlin1 Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 Edited by Federico Capasso, Harvard University, Cambridge, MA, and approved December 4, 2008 (received for review August 26, 2008) Homogeneous composites, or metamaterials, made of dielectric or resonators, have led to a large body of literature devoted to metallic particles are known to show magnetic properties that con- metamaterials magnetism covering the range from microwave to tradict arguments by Landau and Lifshitz [Landau LD, Lifshitz EM optical frequencies (12–16). (1960) Electrodynamics of Continuous Media (Pergamon, Oxford, UK), Although the magnetic behavior of metamaterials undoubt- p 251], indicating that the magnetization and, thus, the permeability, edly conforms to Maxwell’s equations, the reason why artificial loses its meaning at relatively low frequencies. Here, we show that systems do better than nature is not well understood. Claims of these arguments do not apply to composites made of substances with ͌ ͌ strong magnetic activity are seemingly at odds with the fact that, Im S ϾϾ /ഞ or Re S ϳ /ഞ (S and ഞ are the complex permittivity ϾϾ ഞ other than magnetically ordered substances, magnetism in na- and the characteristic length of the particles, and is the ture is a rather weak phenomenon at ambient temperature.* vacuum wavelength). Our general analysis is supported by studies Moreover, high-frequency magnetism ostensibly contradicts of split rings, one of the most common constituents of electro- well-known arguments by Landau and Lifshitz that the magne- magnetic metamaterials, and spherical inclusions. -
The Fine Structure of Weber's Hydrogen Atom: Bohr–Sommerfeld Approach
Z. Angew. Math. Phys. (2019) 70:105 c 2019 Springer Nature Switzerland AG 0044-2275/19/040001-12 published online June 21, 2019 Zeitschrift f¨ur angewandte https://doi.org/10.1007/s00033-019-1149-4 Mathematik und Physik ZAMP The fine structure of Weber’s hydrogen atom: Bohr–Sommerfeld approach Urs Frauenfelder and Joa Weber Abstract. In this paper, we determine in second order in the fine structure constant the energy levels of Weber’s Hamiltonian that admit a quantized torus. Our formula coincides with the formula obtained by Wesley using the Schr¨odinger equation for Weber’s Hamiltonian. We follow the historical approach of Sommerfeld. This shows that Sommerfeld could have discussed the fine structure of the hydrogen atom using Weber’s electrodynamics if he had been aware of the at-his-time-already- forgotten theory of Wilhelm Weber (1804–1891). Mathematics Subject Classification. 53Dxx, 37J35, 81S10. Keywords. Semiclassical quantization, Integrable system, Hamiltonian system. Contents 1. Introduction 1 2. Weber’s Hamiltonian 3 3. Quantized tori 4 4. Bohr–Sommerfeld quantization 6 Acknowledgements 7 A. Weber’s Lagrangian and delayed potentials 8 B. Proton-proton system—Lorentzian metric 10 References 10 1. Introduction Although Weber’s electrodynamics was highly praised by Maxwell [22,p.XI],seealso[4, Preface],, it was superseded by Maxwell’s theory and basically forgotten. In contrast to Maxwell’s theory, which is a field theory, Weber’s theory is a theory of action-at-a-distance, like Newton’s theory. Weber’s force law can be used to explain Amp`ere’s law and Faraday’s induction law; see [4, Ch. -
Weber's Law and Mach's Principle
Weber's Law and Mach's Principle Andre K. T. Assis 1. Introduction Recently we applied a Weber's force law for gravitation to implement quantitatively Mach's Principle (Assis 1989, 1992a). In this work we present a briefreview of Weher's electrodynamics and analyze in greater detail the compliance of a Weber's force law for gravitation with Mach's Principle. 2. Weber's Electrodynamics In this section we discuss Weber's original work as applied to electro magnetism. For detailed references of Weber's electrodynamics, see (Assis 1992b, 1994). In order to unify electrostatics (Coulomb's force, Gauss's law) with electrodynamics (Ampere's force between current elements), W. Weber proposed in 1846 that the force exerted by an electrical charge q2 on another ql should be given by (using vectorial notation and in the International System of Units): (1) In this equation, (;0=8.85'10- 12 Flm is the permittivity of free space; the position vectors of ql and qz are r 1 and r 2, respectively; the distance between the charges is r lZ == Ir l - rzl '" [(Xl -XJ2 + (yj -yJZ + (Zl -ZJ2j112; r12=(r) -r;JlrI2 is the unit vector pointing from q2 to ql; the radial velocity between the charges is given by fIZ==drlzfdt=rI2'vIZ; and the Einstein Studies, vol. 6: Mach's Principle: From Newton's Bucket to Quantum Gravity, pp. 159-171 © 1995 Birkhliuser Boston, Inc. Printed in the United States. 160 Andre K. T. Assis radial acceleration between the charges is [VIZ" VIZ - (riZ "VIZ)2 + r lz " a 12J r" where drlz dvlz dTI2 rIZ=rl-rl , V1l = Tt' a'l=Tt= dt2· Moreover, C=(Eo J4J)"'!12 is the ratio of electromagnetic and electrostatic units of charge %=41f·1O-7 N/Al is the permeability of free space). -
Measurement of Dielectric Material Properties Application Note
with examples examples with solutions testing practical to show written properties. dielectric to the s-parameters converting for methods shows Italso analyzer. a network using materials of properties dielectric the measure to methods the describes note The application | | | | Products: Note Application Properties Material of Dielectric Measurement R&S R&S R&S R&S ZNB ZNB ZVT ZVA ZNC ZNC Another application note will be will note application Another <Application Note> Kuek Chee Yaw 04.2012- RAC0607-0019_1_4E Table of Contents Table of Contents 1 Overview ................................................................................. 3 2 Measurement Methods .......................................................... 3 Transmission/Reflection Line method ....................................................... 5 Open ended coaxial probe method ............................................................ 7 Free space method ....................................................................................... 8 Resonant method ......................................................................................... 9 3 Measurement Procedure ..................................................... 11 4 Conversion Methods ............................................................ 11 Nicholson-Ross-Weir (NRW) .....................................................................12 NIST Iterative...............................................................................................13 New non-iterative .......................................................................................14 -
Chapter 6. Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws
Chapter 6. Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws 6.1 Displacement Current The magnetic field due to a current distribution satisfies Ampere’s law, (5.45) Using Stokes’s theorem we can transform this equation into an integral form: ∮ ∫ (5.47) We shall examine this law, show that it sometimes fails, and find a generalization that is always valid. Magnetic field near a charging capacitor loop C Fig 6.1 parallel plate capacitor Consider the circuit shown in Fig. 6.1, which consists of a parallel plate capacitor being charged by a constant current . Ampere’s law applied to the loop C and the surface leads to ∫ ∫ (6.1) If, on the other hand, Ampere’s law is applied to the loop C and the surface , we find (6.2) ∫ ∫ Equations 6.1 and 6.2 contradict each other and thus cannot both be correct. The origin of this contradiction is that Ampere’s law is a faulty equation, not consistent with charge conservation: (6.3) ∫ ∫ ∫ ∫ 1 Generalization of Ampere’s law by Maxwell Ampere’s law was derived for steady-state current phenomena with . Using the continuity equation for charge and current (6.4) and Coulombs law (6.5) we obtain ( ) (6.6) Ampere’s law is generalized by the replacement (6.7) i.e., (6.8) Maxwell equations Maxwell equations consist of Eq. 6.8 plus three equations with which we are already familiar: (6.9) 6.2 Vector and Scalar Potentials Definition of and Since , we can still define in terms of a vector potential: (6.10) Then Faradays law can be written ( ) The vanishing curl means that we can define a scalar potential satisfying (6.11) or (6.12) 2 Maxwell equations in terms of vector and scalar potentials and defined as Eqs. -
Physics 115 Lightning Gauss's Law Electrical Potential Energy Electric
Physics 115 General Physics II Session 18 Lightning Gauss’s Law Electrical potential energy Electric potential V • R. J. Wilkes • Email: [email protected] • Home page: http://courses.washington.edu/phy115a/ 5/1/14 1 Lecture Schedule (up to exam 2) Today 5/1/14 Physics 115 2 Example: Electron Moving in a Perpendicular Electric Field ...similar to prob. 19-101 in textbook 6 • Electron has v0 = 1.00x10 m/s i • Enters uniform electric field E = 2000 N/C (down) (a) Compare the electric and gravitational forces on the electron. (b) By how much is the electron deflected after travelling 1.0 cm in the x direction? y x F eE e = 1 2 Δy = ayt , ay = Fnet / m = (eE ↑+mg ↓) / m ≈ eE / m Fg mg 2 −19 ! $2 (1.60×10 C)(2000 N/C) 1 ! eE $ 2 Δx eE Δx = −31 Δy = # &t , v >> v → t ≈ → Δy = # & (9.11×10 kg)(9.8 N/kg) x y 2" m % vx 2m" vx % 13 = 3.6×10 2 (1.60×10−19 C)(2000 N/C)! (0.01 m) $ = −31 # 6 & (Math typos corrected) 2(9.11×10 kg) "(1.0×10 m/s)% 5/1/14 Physics 115 = 0.018 m =1.8 cm (upward) 3 Big Static Charges: About Lightning • Lightning = huge electric discharge • Clouds get charged through friction – Clouds rub against mountains – Raindrops/ice particles carry charge • Discharge may carry 100,000 amperes – What’s an ampere ? Definition soon… • 1 kilometer long arc means 3 billion volts! – What’s a volt ? Definition soon… – High voltage breaks down air’s resistance – What’s resistance? Definition soon.. -
Presenting Electromagnetic Theory in Accordance with the Principle of Causality Oleg D Jefimenko
Faculty Scholarship 2004 Presenting electromagnetic theory in accordance with the principle of causality Oleg D Jefimenko Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Digital Commons Citation Jefimenko, Oleg D, "Presenting electromagnetic theory in accordance with the principle of causality" (2004). Faculty Scholarship. 290. https://researchrepository.wvu.edu/faculty_publications/290 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. INSTITUTE OF PHYSICS PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 25 (2004) 287–296 PII: S0143-0807(04)69749-2 Presenting electromagnetic theory in accordance with the principle of causality Oleg D Jefimenko Physics Department, West Virginia University, PO Box 6315, Morgantown, WV 26506-6315, USA Received 1 October 2003 Published 28 January 2004 Online at stacks.iop.org/EJP/25/287 (DOI: 10.1088/0143-0807/25/2/015) Abstract Amethod of presenting electromagnetic theory in accordance with the principle of causality is described. Two ‘causal’ equations expressing time-dependent electric and magnetic fields in terms of their causative sources by means of retarded integrals are used as the fundamental electromagnetic equations. Maxwell’s equations are derived from these ‘causal’ equations. Except for the fact that Maxwell’s equations appear as derived equations, the presentation is completely compatible with Maxwell’s electromagnetic theory. An important consequence of this method of presentation is that it offers new insights into the cause-and-effect relations in electromagnetic phenomena and results in simpler derivations of certain electromagnetic equations. -
PHYS 352 Electromagnetic Waves
Part 1: Fundamentals These are notes for the first part of PHYS 352 Electromagnetic Waves. This course follows on from PHYS 350. At the end of that course, you will have seen the full set of Maxwell's equations, which in vacuum are ρ @B~ r~ · E~ = r~ × E~ = − 0 @t @E~ r~ · B~ = 0 r~ × B~ = µ J~ + µ (1.1) 0 0 0 @t with @ρ r~ · J~ = − : (1.2) @t In this course, we will investigate the implications and applications of these results. We will cover • electromagnetic waves • energy and momentum of electromagnetic fields • electromagnetism and relativity • electromagnetic waves in materials and plasmas • waveguides and transmission lines • electromagnetic radiation from accelerated charges • numerical methods for solving problems in electromagnetism By the end of the course, you will be able to calculate the properties of electromagnetic waves in a range of materials, calculate the radiation from arrangements of accelerating charges, and have a greater appreciation of the theory of electromagnetism and its relation to special relativity. The spirit of the course is well-summed up by the \intermission" in Griffith’s book. After working from statics to dynamics in the first seven chapters of the book, developing the full set of Maxwell's equations, Griffiths comments (I paraphrase) that the full power of electromagnetism now lies at your fingertips, and the fun is only just beginning. It is a disappointing ending to PHYS 350, but an exciting place to start PHYS 352! { 2 { Why study electromagnetism? One reason is that it is a fundamental part of physics (one of the four forces), but it is also ubiquitous in everyday life, technology, and in natural phenomena in geophysics, astrophysics or biophysics. -
Chapter 10: Potentials and Fields Example 10.1
Chapter 10: Potentials and Fields Scalar and Vector Potentials 10.1 The Potential Formulation 10.1.1 Scalar and Vector Potentials In the electrodynamics, In the electrostatics and magnetostatics, 1 ∂B (i) ∇⋅EE =ρ (iii) ∇× =− 1 ε ∂t (i) ∇⋅EE =ρ (iii) ∇× =0 0 ε0 ∂E (ii) ∇⋅BBJ =0 (iV) ∇× =µµε000 + (ii) ∇⋅BBJ =0 (iV) ∇× =µ0 ∂t How do we express the fields in terms of scalar and vector the electric field and magnetic field can be expressed using potentials? potential: 1 E =−∇VV −∇2 = ρ B remains divergence, so we can still write, BA=∇× ε0 Putting this into Faraday’s law (iii) yields, BA=∇× ∇×( ∇×A ) =µ J 0 ∂∂∂AA 22 ∇×EA =−() ∇× =∇× () − ⇒ ∇×( E + )0 = ∇×( ∇×A ) =∇ ( ∇⋅ A ) −∇ AJ =µµ00 ⇒ −∇ AJ = ∂∂∂ttt ∂A If A 0. 1 E +=−∇V 2 ∇⋅ = ∂t Scalar and Vector Potentials Example 10.1 ∂A Find the charge and current distributions that would give rise BA=∇× E =−∇V − ∂t to the potentials. 1 ∂ 1 µ0k (||)ct− x 2 zˆ for |xct |< (i) ∇⋅E = ρ −∇2VA −() ∇ ⋅ = ρ V ==0, A 4c ε 0 ∂t ε0 0 for |xct |> ∂E ∂∂V 2A Where k is a constant, and c is the speed of light. (iV) ∇×BJ =µµε + ∇×() ∇×AJ =µµε − ∇ () − µε 000 000 002 ∂ ∂t ∂tt∂ Solution: ρε=−() ∇⋅A 0 ∂t 2 We can further yields. 112 ∂ A JA=− ∇ −µε00 2 + ∇() ∇⋅ A 2 ∂ 1 µµ∂t ∇+V () ∇⋅=−A ρ 00 ∂t ε0 ∂A ∂Ax y ∂Az 2 ∇⋅A = + + =0 2 ∂∂A V ∂∂∂xyz ∇−AAJµ00εµεµ2 −∇∇⋅+ 00 =− 0 ∂∂tt ∂∂∂222 µ k ρ = 0 ∇=2Azz() + +A ˆˆ =0 These two equations contain all the information in Maxwell’s ∂∂∂x222y zcz 4 J = 0 equations.