Foliations and the Geometry of 3–Manifolds
Foliations and the Geometry of 3–Manifolds Danny Calegari California Institute of Technology CLARENDON PRESS . OXFORD 2007 iv PREFACE The pseudo-Anosov theory of taut foliations The purpose of this book is to give an exposition of the so-called “pseudo- Anosov” theory of foliations of 3-manifolds. This theory generalizes Thurston’s theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Some (but by no means all) of the content of this theory can be found already in the literature, espe- cially [236], [239], [82], [95], [173], [73], [75], [72], [31], [33], [35], [40] and [37], although I hope my presentation and perspective offers something new, even to the experts. This book is not meant to be an introduction to either the theory of folia- tions in general, nor to the geometry and topology of 3-manifolds. An excellent reference for the first is [42] and [43]. Some relevant references for the second are [127], [140], [230], and [216]. Spiral of ideas One conventional school of mathematical education holds that children should be exposed to the same material year after year, but that each time they return they should be exposed to it at a “higher level”, with more nuance, and with gradually more insight and perspective. The student progresses in an ascending spiral, rising gradually but understanding what is important. This book begins with the theory of surface bundles. The first chapter is both an introduction to, and a rehearsal for the theory developed in the rest of the book.
[Show full text]