New Particle Formation Infrequently Observed in Himalayan Foothills – Why?
Atmos. Chem. Phys., 11, 8447–8458, 2011 www.atmos-chem-phys.net/11/8447/2011/ Atmospheric doi:10.5194/acp-11-8447-2011 Chemistry © Author(s) 2011. CC Attribution 3.0 License. and Physics New particle formation infrequently observed in Himalayan foothills – why? K. Neitola1, E. Asmi1, M. Komppula2, A.-P. Hyvarinen¨ 1, T. Raatikainen1,3, T. S. Panwar4, V. P. Sharma4, and H. Lihavainen1 1Finnish meteorological Institute, Helsinki, Finland 2Finnish meteorological Institute, Kuopio, Finland 3Georgia Institute of Technology, Atlanta, Georgia, USA 4Energy and Resource Institute, New Delhi, India Received: 10 December 2010 – Published in Atmos. Chem. Phys. Discuss.: 29 April 2011 Revised: 29 July 2011 – Accepted: 16 August 2011 – Published: 19 August 2011 Abstract. A fraction of the Himalayan aerosols originate 1 Introduction from secondary sources, which are currently poorly quan- tified. To clarify the climatic importance of regional sec- Secondary particle formation from gaseous precursors is ondary particle formation in the Himalayas, data from 2005 largely recognised as an important worldwide mechanism in- to 2010 of continuous aerosol measurements at a high- creasing the number of atmospheric particles (Kulmala et al., altitude (2180 m) Indian Himalayan site, Mukteshwar, were 2004; Spracklen et al., 2006, 2009). While in the atmo- analyzed. For this period, the days were classified, and the sphere, these particles are affected by several physical and particle formation and growth rates were calculated for clear chemical processes influencing the particle climatic proper- new particle formation (NPF) event days. The NPF events ties, such as their scattering and absorbing characteristics and showed a pronounced seasonal cycle. The frequency of the their ability to act as Cloud Condensation Nuclei (CCN).
[Show full text]