6.0 References

Total Page:16

File Type:pdf, Size:1020Kb

6.0 References Naval Auxiliary Landing Field San Clemente Island Integrated Natural Resources Management Plan 1 6.0 References 2 6.1 Chapter 1 3 National Oceanic and Atmospheric Administration. 2009. Channel Islands National Marine Sanctuary 4 Management Plan. Accessed online: http://channelislands.noaa.gov/manplan/overview.html. 5 Naval Facilties Engineering Command (NAVFAC) Southwest. 2001. Activity Overview Plan (Phase I), 6 Naval Auxiliary Landing Field, San Clemente Island. Existing Situation Assessment. August 2001. 7 U.S. Department of Defense (DoD). 2006. Department of Defense Integrated Natural Resources Manage- 8 ment Plan (INRMP) Template. Available online at: http://www.denix.osd.mil/nr/upload/INRMP- 9 TEMPLATE.PDF. 10 U.S. Department of Defense (DoD). 2011. Department of Defense Instruction (DoDINST) 4715.03: Natu- 11 ral Resources Conservation Prorgram Manual. March 18, 2011. 12 U.S. Department of the Navy (Navy) 2002. San Clemente Island Integrated Natural Resources Manage- 13 ment Plan (INRMP): 926 pp. 14 U.S. Department of the Navy (Navy). 2006. Integrated Natural Resources Management Plan Guidance for 15 Navy Installations: How to Prepare, Implement, and Revise Integrated Natural Resource Management 16 Plans (INRMP). April 2006. 17 U.S. Department of the Navy (Navy). 2007. Chief of Naval Operations Instruction 5090.1C: Environmen- 18 tal Readiness Program Manual. October 30, 2007. 19 U.S. Department of the Navy (Navy). 2008. Southern California Range Complex (SOCAL) Environmental 20 Impact Statement (EIS)/Overseas Environmental Impact Statement Volume 1 of 2: Chapters 1-3. 21 Final. 22 Yatsko, A. 2000. Of Marine Terraces and Sand Dunes: The Landscape of San Clemente Island. Pacific 23 Coast Archaeological Society Quarterly. Vol. 36(1), Winter 2000: 25-30. 24 6.2 Chapter 2 25 Andrew, V.R. 1998. A historical geographical study of San Clemente Island. Master’s Thesis, California 26 State University, Long Beach. 27 Bruce, C. S. 1994. A historical geography of San Clemente Island 1542-1935. May 1994. Thesis pre- 28 sented to the University Scholars Program, California State University, Long Beach, CA. 297p.+ 29 appendices. 30 Byrd, B. F., and M. L. Raab. 2007. Prehistory of the Southern Bight: Models for the New Millennium. In 31 California Prehistory: Colonization, Culture, and Complexity, edited by Terry L. Jones and Kathryn A. 32 Klar. Alta Mira Press, Lanham, Maryland. References 6-1 Draft July 2012 Integrated Natural Resources Management Plan 1 Bass, R.E., and A.I. Herson. 1993. Mastering NEPA: A step-by-step approach. Point Arena CA: Solano 2 Press Books. 3 Cylinder, P.D., K.M. Bogdan, E.M. Davis, and A. I. Herson, eds. 1995. Wetlands regulation: a complete 4 guide to federal and California programs. Point Arena CA: Solano Press Books. 5 Engle, Jack. 2001. Personal Communication. University of California at Santa Barbara (UCSB). 6 Erlandson, J. M. 2002. Anatomically Modern Humans, Maritime Voyaging, and the Pleistocene Coloniza- 7 tion of the Americas. In The First Americans: The Pleistocene Colonization of the New World, edited by 8 Nina G. Jablonski, Memoirs of the California Academy of Sciences 27: 59-92. 9 Erlandson, J. M., T. C. Rick, T. L. Jones, and J. F. Porcasi. 2007. One if by Land, Two if by Sea. In Califor- 10 nia Prehistory: Colonization, Culture, and Complexity, edited by Terry L. Jones and Kathryn A. Klar. 11 Alta Mira Press, Lanham, Maryland. 12 Fladmark, K. 1979. Routes: Alternative Migration Corridors for Early Man in North America. American 13 Antiquity 44: 55-69. 14 Fletcher, R. 1999. Personal Communication. Sport Fishing Association of California. San Diego, CA. 15 Guth, J. 1999. Personal Communication. California lobster and trap fisherman's association of Califor- 16 nia. Oceanside, CA. 17 Halmay, P. 1999. Personal Communication. Sea urchin harvester's association of California. Bodega 18 Bay, CA. 19 Helgren, R. Personal Communication. 1999. Helgren sport fishing. Oceanside, CA. 20 Holder, C.F. 1910. The Channel Islands of California: a book for the angler, sportsman, and tourist. A.C. 21 McClurg and Co., Chicago. 22 Hume, R.A. 1959. A history of San Clemente Island. Unpublished U.S. Department of Navy brochure. 23 Jackaloni, V. 1999. Personal Communication. Commercial Fisherman. San Diego, CA. 24 Johnson, J. 1988. The People of Quinquina: San Clemente Islands Original Inhabitants as described in 25 Ethnohistoric Documents. Unpublished report on file at Natural Resources Office, NAVFAC SW, San 26 Diego, California. 27 Moratto, M. 1984. California Archaeology. Academic Press, Orlando, Florida. 28 Naval Undersea Center, San Diego. 1974. Environmental Impact Statement (EIS) for San Clemente Island 29 Naval Utilization Plan. 30 Noah, C.A. 1987. A meeting of paradigms: a late century analysis of mid-century excavations on San 31 Clemente Island. Master’s Thesis, San Diego State University (SDSU). 32 Raab, L. M., and A. Yatsko. 2001. Maritime Archaeology and Research Design of Quinquina, San Clem- 33 ente Island, CA (Draft of 03-14-01). On file with Commander Navy Region Southwest, Natural 34 Resources Office, NAVFAC SW, San Diego, California. 35 Salls, Roy A. 2000. The Prehistoric Fishery of San Clemente Island. Pacific Coast Archaeological Society 36 Quarterly. Vol. 36(1&2), Winter 2000: 52-71. 37 Schoenherr, A.A., C.R. Feldmeth, and M.J. Emerson. 1999. Natural history of the islands of California. 38 University of California Press, Berkeley, CA. 39 Storey, N. C. 2002. The Archaeology of Industrial Agrarian Capitalism and Framework for the Evaluation 40 of a Rural Historic Landscape: A Case Study on San Clemente Island. Unpublished M.A. Thesis 41 Department of Anthropology, Sonoma State University. On file, Navy Region Southwest Environmen- 42 tal Department, NAVFAC SW, San Diego, California. 43 Sturgeon, W.J. 2000. San Clemente Island-a chronological military history. 44 Walker, P. L., S. Siefkin, J. Johnson, and A. Yatsko. 1993. Standards and Policies for the Preparation of a 45 Native American Graves Protection and Repatriation Act Summary and Inventory of Native American 46 Cultural Items from San Clemente Island, California. Prepared for Commanding Officer Naval Air Sta- 47 tion, North Island and Commanding Officer, Southwest Division, Naval Engineering Facilities Com- 48 mand, San Diego. On file at Natural Resources Office, NAVFAC SW, San Diego, California. 6-2 References Naval Auxiliary Landing Field San Clemente Island Draft July 2012 1 Yatsko, Andrew. 2002. Personal Communication. Archeologist, Commander Navy Region Southwest, San 2 Diego, CA. 3 6.3 Chapter 3 4 Abbott, I. A. and G. J. Hollenberg. 1976. Marine algae of California. Stanford, CA, Stanford University 5 Press. 6 Ainley, D.G., D.W. Anderson, and P.R. Kelly. 1981. Feeding ecology of marine cormorants in southwest- 7 ern North America. Condor 83: 120-131. 8 Ainley, D. G. and R. J. Boekelheide, Eds. 1990. Seabirds of the Farallon Islands: ecology, dynamics, and 9 structure of an upwelling-system community. Stanford, CA. 10 Ainley, D.G., R.P. Henderson, and C.S. Strong. 1990. Leach's and Ashy Storm-Petrel. In: Seabirds of the 11 Farallon Islands: Ecology, Dynamics and Structure of an Upwelling-System Community D.G. Ainley 12 and R.J. Boekelheide, eds.). Standford University Press, Standford, CA. 13 Ainley, D. G., W. J. Sydeman, et al. 1995. "Upper trophic level predators indicate interannual negative 14 and positive anomalies in the California Current food web. ." Marine Ecological Progress Series: 15 118:69-79. 16 Ainley, D. G. and W. T. Everett. 2001. Balck storm-petrel (Oceanodroma melania). The Birds of North 17 America, No. 577. A. P. a. F. Gill. Philadelphia, Pennsylvania, The Birds of North America, Inc. 18 Ainley, D.G., S. Morrell, and T.J. Lewis. 1974. Patterns in the life-histories of storm petrels on the Faral- 19 lon Islands. Living Bird 13: 295-312. 20 Allen, L. G. 1985. "A habitat analysis of the nearshore marine fishes from southern California." Bulletin 21 Southern California Academy of Sciences 84(3): 133-155. 22 Allen, L. G., L.S. Bouvier, R.E. Jensen 1992. "Abundance, diversity, and seasonality of cryptic fishes and 23 their contribution to a temperate reef fish assemblage off Santa Catalina Island, California." Bulletin 24 Southern California Academy of Sciences 91(2): 55-69. 25 Allen, M.J. 1982. Functional and structure of soft-bottom fish communities of the Southern California 26 shelf. Ph.D. Dissertation. University of California, San Diego, La Jolla, CA. 27 Allen, M.J. 2006. Continential Shelf and Upper Slope. The Ecology of Marine Fishes: California and Adja- 28 cent Waters, Pp. 167-202 (L.G. Allen, D.J. Pondella II, and M.H. Horn, eds.). University of California 29 Press, Berkeley and Los Angeles, California. 30 Allen, M. J. and K. T. Herbinson 1991. Beam-trawl survey of bay and nearshore fishes of the soft-bottom 31 habitat of southern California in 1989 California Cooperative Oceanic Fishes Investigative Report. 32: 32 112-127. 33 Anderson, D.W., B. Elliot, F. Gress, K. Vincent, and T. Work. 1994. Brown Pelican. Pp. 132-135 In Life on 34 the edge: a guide to California's endangered natural resources (C.G. Thelander and M. Crabtree, eds.). 35 Biosystem Books, Santa Cruz, CA. 36 Anderson, D.W., and F. Gress. 1983. Status of a northern population of California Brown Pelicans. Con- 37 dor 85: 79-88. 38 Anderson, D.W. and F. Gress. 1984. Brown pelicans and the anchovy fishery off southern California. Pp. 39 125-135 IIn Marine birds: their feeding ecology and commercial fisheries relationships (D.N. Nettle- 40 ship, G.A. Sanger and P.F. Springer, eds.). Canadian Wildlife Species Publication (Canada Minister of 41 Supply and Services, Cat. No. CW66-65/1984). 42 Anderson, D.W., F. Gress, and M.F. Mais. 1982. Brown pelicans: influence of food supply on reproduc- 43 tion.
Recommended publications
  • Diets and Coexistence of the Sea Urchins Lytechinus Variegatus and Arbacia Punctulata (Echinodermata) Along the Central Florida Gulf Coast
    MARINE ECOLOGY PROGRESS SERIES Vol. 295: 171–182, 2005 Published June 23 Mar Ecol Prog Ser Diets and coexistence of the sea urchins Lytechinus variegatus and Arbacia punctulata (Echinodermata) along the central Florida gulf coast Janessa Cobb, John M. Lawrence* Department of Biology, University of South Florida, Tampa, Florida 33620, USA ABSTRACT: The basis for coexistence of similar species is fundamental in community ecology. One mechanism for coexistence is differentiation of diets. Lytechinus variegatus and Arbacia punctulata coexist in different microhabitats along the Florida gulf coast. Their great difference in morphology might affect their choice of microhabitats and diet. We analyzed diets of both species at 1 offshore and 1 nearshore site where both occurred in relatively equal numbers, an offshore site dominated by A. punctulata and an offshore site dominated by L. variegatus. Gut contents were analyzed to deter- mine the diet. A. punctulata prim. consumed sessile invertebrates except on dates when algal avail- ability was higher than normal. L. variegatus primarily consumed macroflora except on dates when macroflora was extremely limited. Electivity indices revealed no strong preferences for particular species of algae, although L. variegatus consumed many drift species. A. punctulata and L. variega- tus both fed in a random manner, although they avoided particular species of algae known to contain high concentrations of secondary metabolites. The diet of A. punctulata was correlated with algae only over rubble outcroppings at the offshore site with the highest biomass. Diets of offshore popula- tions were more similar to each other, regardless of the presence of conspecifics, than to those of populations at Caspersen Beach (nearshore site).
    [Show full text]
  • GAYANA Genetic Diversity and Demographic History of the Endemic Southeastern Pacific Sea Urchin Arbacia Spatuligera
    GAYANA Gayana (2019) vol. 83, No. 2, 81-92 DOI: 10.4067/S0717-65382019000200081 ORIGINAL ARTICLE Genetic diversity and demographic history of the endemic Southeastern Pacific sea urchin Arbacia spatuligera (Valenciennes 1846) Diversidad genética e historia demográfica del erizo de mar endémico del Pacífico Sureste Arbacia spatuligera (Valenciennes 1846) Constanza Millán1, Angie Díaz1,2,*, Elie Poulin2,3, Catalina Merino-Yunnissi4 & Andrea Martínez4 1Laboratorio de Ecología Molecular Marina (LEMMAR), Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile. 2Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile. 3Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. 4Departamento de Zoología de Invertebrados, Museo Nacional de Historia Natural, Santiago, Chile. *Email: [email protected] ABSTRACT The pattern of the genetic structuring of marine species result from the relationship between homogenizing and structuring factors, together with historical and contemporary processes. Dispersal potential has been described as a homogenizing factor, corroborated by the connectivity paradigm, which states that high dispersers show low or no genetic differentiation. In contrast, biogeographic breaks and oceanic currents have an important role in limiting or enhancing connectivity, being structuring factors. We studied this relationship in Arbacia spatuligera, a subtidal echinoid with a planktonic larval stage, which is distributed along the Southeastern Pacific (SEP). The SEP is divided into two biogeographic provinces with an Intermediate Area between both them, which is delimited by two biogeographic breaks (~30° S and 40°-42° S). Moreover, much of the SEP coast, from ~42° S to 6° S, it is influenced by a complex system of marine currents known as the Humboldt Current System (HCS).
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • CAMUS PATRICIO.Pmd
    Revista de Biología Marina y Oceanografía Vol. 48, Nº3: 431-450, diciembre 2013 DOI 10.4067/S0718-19572013000300003 Article A trophic characterization of intertidal consumers on Chilean rocky shores Una caracterización trófica de los consumidores intermareales en costas rocosas de Chile Patricio A. Camus1, Paulina A. Arancibia1,2 and M. Isidora Ávila-Thieme1,2 1Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile. [email protected] 2Programa de Magister en Ecología Marina, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile Resumen.- En los últimos 50 años, el rol trófico de los consumidores se convirtió en un tópico importante en la ecología de costas rocosas de Chile, centrándose en especies de equinodermos, crustáceos y moluscos tipificadas como herbívoros y carnívoros principales del sistema intermareal. Sin embargo, la dieta y comportamiento de muchos consumidores aún no son bien conocidos, dificultando abordar problemas clave relativos por ejemplo a la importancia de la omnivoría, competencia intra-e inter-específica o especialización individual. Intentando corregir algunas deficiencias, ofrecemos a los investigadores un registro dietario exhaustivo y descriptores ecológicos relevantes para 30 especies de amplia distribución en el Pacífico sudeste, integrando muestreos estacionales entre 2004 y 2007 en 4 localidades distribuidas en 1.000 km de costa en el norte de Chile. Basados en el trabajo de terreno y laboratorio,
    [Show full text]
  • Distribution Patterns of Tetrapygus Niger (Echinodermata: Echinoidea) Off the Central Chilean Coast
    MARINE ECOLOGY PROGRESS SERIES Published November 4 Mar. Ecol. Prog. Ser. Distribution patterns of Tetrapygus niger (Echinodermata: Echinoidea) off the central Chilean coast Sebastian R. Rodriguez, F. Patricio Ojeda* Departamento de Ecologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile ABSTRACT: We investigated spatial distnbution and temporal occurrence patterns of Tetrapygus niger in the subtidal zone off the central Chilean coast from March to November 1990. The shallowest por- tion of the subtidal zone and the shallowest edge of the kelp forest of Lessonia trabeculata appeared to be important recruitment zones for this species We found a s~gnificantnumber of recruits along the bed border, and a marked decrease of urchn abundance toward the center of the kelp Data obtained in September and November outside the kelp bed showed juvenile urchins [i.e.<24 mm test diameter (TD)]strongly associated with crevices. Size-frequency distributions at 2 m depth for those months also showed a large trough of intermediate-sized individuals (i.e. 15 to 30 mm TD). Temporal analysls of size-frequency distributions of individuals collected outs~dethe kelp showed a relatively slow shift of modes between March and September and a malor modal shift from September to November. Density values of urchins found in November were relatively low; however, the individuals appeared aggre- gated. INTRODUCTION MATERIALS AND METHODS Sea urchins are one of the most common components Sea urchins were collected at Punta de Tralca (33' of near-shore marine ecosystem worldwide, often play- 35' S, 71" 42' W) off the central Chilean coast.
    [Show full text]
  • The State of Knowledge of Deep-Sea Corals in the New Zealand Region Di Tracey1 and Freya Hjorvarsdottir2 (Eds, Comps) © 2019
    The state of knowledge of deep-sea corals in the New Zealand region Di Tracey1 and Freya Hjorvarsdottir2 (eds, comps) © 2019. All rights reserved. The copyright for this report, and for the data, maps, figures and other information (hereafter collectively referred to as “data”) contained in it, is held by NIWA is held by NIWA unless otherwise stated. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. While NIWA uses all reasonable endeavours to ensure the accuracy of the data, NIWA does not guarantee or make any representation or warranty (express or implied) regarding the accuracy or completeness of the data, the use to which the data may be put or the results to be obtained from the use of the data. Accordingly, NIWA expressly disclaims all legal liability whatsoever arising from, or connected to, the use of, reference to, reliance on or possession of the data or the existence of errors therein. NIWA recommends that users exercise their own skill and care with respect to their use of the data and that they obtain independent professional advice relevant to their particular circumstances. NIWA SCIENCE AND TECHNOLOGY SERIES NUMBER 84 ISSN 1173-0382 Citation for full report: Tracey, D.M. & Hjorvarsdottir, F. (eds, comps) (2019). The State of Knowledge of Deep-Sea Corals in the New Zealand Region. NIWA Science and Technology Series Number 84. 140 p. Recommended citation for individual chapters (e.g., for Chapter 9.: Freeman, D., & Cryer, M. (2019). Current Management Measures and Threats, Chapter 9 In: Tracey, D.M.
    [Show full text]
  • UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE BIOLOGÍA Riqueza Y
    UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE BIOLOGÍA Riqueza y tipos de hábitat de equinodermos en la Región Arequipa al 2017 Tesis para optar el título profesional de Biólogo presentado por el Bachiller en Ciencias Biológicas: Michael Leopoldo Espinoza Roque Asesor: Blgo. Dr. Graciano Alberto Del Carpio Tejada AREQUIPA – PERÚ 2018 1 ____________________________________ Blgo. Dr. Graciano Alberto Del Carpio Tejada ASESOR 2 DEDICATORIA A la memoria de mi padre, Leopoldo Espinoza Ramos, por todo su cariño, comprensión y sacrificio, sé que estaría feliz al verme cumplir esta meta. 3 AGRADECIMIENTOS A la Universidad Nacional de San Agustín de Arequipa (UNSA INVESTIGA), por el soporte financiero, con recursos del canon de la UNSA, para que se realice el presente proyecto de investigación (Contrato de financiamiento N° 156 – 2016 – UNSA), y un especial agradecimiento al Blgo. Luis Alberto Ponce Soto por la paciencia y apoyo en el acompañamiento y monitoreo de mi proyecto. A mi asesor de tesis, Blgo. Dr. Graciano Alberto Del Carpio Tejada, por su apoyo incondicional durante el desarrollo del presente trabajo de investigación. A la Blga. Rosaura Gonzales Juárez, por su contribución al inicio de este proyecto y sus enseñanzas y consejos que han aportado en mi formación profesional. Al Blgo. Franz Cardoso Pacheco, por permitirme consultar material de la colección científica del Laboratorio de Biología y Sistemática de Invertebrados Marinos de la Facultad de Ciencias Biológicas (LaBSIM), de la Universidad Nacional Mayor de San Marcos. A Gustavo Robles Fernández, Por permitirme consultar material del Instituto de Investigación y Desarrollo Hidrobiológico de la Universidad Nacional de San Agustín (INDEHI – UNSA).
    [Show full text]
  • Scales of Detection and Escape of the Sea Urchin Tetrapygus Niger in Interactions with the Predatory Sun Star Heliaster Helianthus
    Journal of Experimental Marine Biology and Ecology 407 (2011) 302–308 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Scales of detection and escape of the sea urchin Tetrapygus niger in interactions with the predatory sun star Heliaster helianthus Tatiana Manzur a,b,⁎, Sergio A. Navarrete a a Estación Costera de Investigaciones Marinas & Center for Advanced Studies in Ecology and Biodiversity, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile b Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile article info abstract Article history: Predators can simultaneously have lethal (consumption) and non-lethal (modification of traits) effects on Received 26 January 2011 their prey. Prey escape or fleeing from potential predators is a common form of a non-lethal predator effect. Received in revised form 20 June 2011 The efficiency of this response depends on the prey's ability to detect and correctly identify its predator far Accepted 26 June 2011 enough to increase the probability of successful escape, yet short enough to allow it to allocate time to other Available online 26 July 2011 activities (e.g. foraging). In this study, we characterized the non-lethal effect of the sun star Heliaster helianthus on the black sea urchin Tetrapygus niger by assessing the nature of predator detection and the Keywords: fi Detection spatial scale involved both in predator detection and in the escape response. Through eld and laboratory Escape experiments we demonstrate that T.
    [Show full text]
  • The Cnidae of the Acrospheres of the Corallimorpharian Corynactis Carnea (Studer, 1878) (Cnidaria, Corallimorpharia, Corallimorp
    Belg. J. Zool., 139 (1) : 50-57 January 2009 The cnidae of the acrospheres of the corallimorpharian Corynactis carnea (Studer, 1878) (Cnidaria, Corallimorpharia, Corallimorphidae): composition, abundance and biometry Fabián H. Acuña 1 & Agustín Garese Departamento de Ciencias Marinas. Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Mar del Plata. Funes 3250. 7600 Mar del Plata. Argentina. 1 Researcher of CONICET. Corresponding author : [email protected] ABSTRACT. Corynactis carnea is a common corallimorpharian in the southwestern Atlantic Ocean, particularly in the Argentine Sea, and possesses spherical structures called acrospheres at the tips of its tentacles, characterized by particular cnidae. Twelve specimens were collected to identify and measure the types of cnidae present in the acrospheres, to estimate their abundance and to study the biometry of the different types. The cnidae of the acrospheres are spirocysts, holotrichs, two types of microbasic b-mas- tigophores and two types of microbasic p-mastigophores. Spirocysts were the most abundant type, followed by microbasic p-mas- tigophores and microbasic b-mastigophores; holotrichs were the least abundant. The size of only the spirocysts fitted well to a nor- mal distribution; the other types fitted to a gamma distribution. A high variability in length was observed for each type of cnida. R statistical software was employed for statistical treatments. The cnidae of the acrospheres of C. carnea are compared with those of other species of the genus . KEY WORDS : cnidocysts, biometry, acrospheres, Corallimorpharia, Argentina. INTRODUCTION daria. They vary in terms of their morphology and their functions, which include defence, aggression, feeding and The Corallimorpharia form a relatively small, taxo- larval settlement (F RANCIS , 2004).
    [Show full text]
  • Phylogeography and Bindin Evolution in Arbacia, a Sea Urchin Genus with an Unusual Distribution
    Molecular Ecology (2011) doi: 10.1111/j.1365-294X.2011.05303.x Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution H. A. LESSIOS,* S. LOCKHART,† R. COLLIN,* G. SOTIL,‡ P. SANCHEZ-JEREZ,§ K. S. ZIGLER,– A. F. PEREZ,** M. J. GARRIDO,†† L. B. GEYER,* G. BERNARDI,‡‡ V. D. VACQUIER,§§ R. HAROUN–– and B. D. KESSING* 1 *Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Panama, †National Oceanic and Atmospheric Administration, ‡Facultad de Ciencias Biolo´gicas, Universidad Nacional Mayor de San Marcos, Lima, Peru´, §Departamento de Ciencias Ambientales, Universidad de Alicante, Alicante, Espan˜a, –Department of Biology, Sewanee: The University of the South, Sewanee, TN, USA, **Departamento de Ecologı´a, Gene´tica y Evolucio´n, Universidad de Buenos Aires, Buenos Aires, Argentina, ††Servicio de Espacios Naturales, Gobierno de Canarias, Las Palmas, Espan˜a, ‡‡Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA, §§Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA, ––Universidad de Las Palmas de Gran Canaria, Las Palmas, Islas Canarias, Espan˜a Abstract Among shallow water sea urchin genera, Arbacia is the only genus that contains species found in both high and low latitudes. In order to determine the geographical origin of the genus and its history of speciation events, we constructed phylogenies based on cytochrome oxidase I and sperm bindin from all its species. Both the mitochondrial and the nuclear gene genealogies show that Arbacia originated in the temperate zone of the Southern Hemisphere and gave rise to three species in the eastern Pacific, which were then isolated from the Atlantic by the Isthmus of Panama.
    [Show full text]
  • Tentacle Morphological Variation Coincides with Differential Expression of Toxins in Sea Anemones
    toxins Article Tentacle Morphological Variation Coincides with Differential Expression of Toxins in Sea Anemones Lauren M. Ashwood 1,* , Michela L. Mitchell 2,3,4,5 , Bruno Madio 6, David A. Hurwood 1,7, Glenn F. King 6,8 , Eivind A. B. Undheim 9,10,11 , Raymond S. Norton 2,12 and Peter J. Prentis 1,7 1 School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; [email protected] (D.A.H.); [email protected] (P.J.P.) 2 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; [email protected] (M.L.M.); [email protected] (R.S.N.) 3 Sciences Department, Museum Victoria, G.P.O. Box 666, Melbourne, VIC 3001, Australia 4 Queensland Museum, P.O. Box 3000, South Brisbane, QLD 4101, Australia 5 Bioinformatics Division, Walter & Eliza Hall Institute of Research, 1G Royal Parade, Parkville, VIC 3052, Australia 6 Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (B.M.); [email protected] (G.F.K.) 7 Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4000, Australia 8 ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD 4072, Australia 9 Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] 10 Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway 11 Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Blindern, NO-0316 Oslo, Norway Citation: Ashwood, L.M.; Mitchell, 12 ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia M.L.; Madio, B.; Hurwood, D.A.; * Correspondence: [email protected] King, G.F.; Undheim, E.A.B.; Norton, R.S.; Prentis, P.J.
    [Show full text]