Academia Arena 2019;11(3)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
APA Newsletter on Philosophy and Computers, Vol. 18, No. 2 (Spring
NEWSLETTER | The American Philosophical Association Philosophy and Computers SPRING 2019 VOLUME 18 | NUMBER 2 FEATURED ARTICLE Jack Copeland and Diane Proudfoot Turing’s Mystery Machine ARTICLES Igor Aleksander Systems with “Subjective Feelings”: The Logic of Conscious Machines Magnus Johnsson Conscious Machine Perception Stefan Lorenz Sorgner Transhumanism: The Best Minds of Our Generation Are Needed for Shaping Our Future PHILOSOPHICAL CARTOON Riccardo Manzotti What and Where Are Colors? COMMITTEE NOTES Marcello Guarini Note from the Chair Peter Boltuc Note from the Editor Adam Briggle, Sky Croeser, Shannon Vallor, D. E. Wittkower A New Direction in Supporting Scholarship on Philosophy and Computers: The Journal of Sociotechnical Critique CALL FOR PAPERS VOLUME 18 | NUMBER 2 SPRING 2019 © 2019 BY THE AMERICAN PHILOSOPHICAL ASSOCIATION ISSN 2155-9708 APA NEWSLETTER ON Philosophy and Computers PETER BOLTUC, EDITOR VOLUME 18 | NUMBER 2 | SPRING 2019 Polanyi’s? A machine that—although “quite a simple” one— FEATURED ARTICLE thwarted attempts to analyze it? Turing’s Mystery Machine A “SIMPLE MACHINE” Turing again mentioned a simple machine with an Jack Copeland and Diane Proudfoot undiscoverable program in his 1950 article “Computing UNIVERSITY OF CANTERBURY, CHRISTCHURCH, NZ Machinery and Intelligence” (published in Mind). He was arguing against the proposition that “given a discrete- state machine it should certainly be possible to discover ABSTRACT by observation sufficient about it to predict its future This is a detective story. The starting-point is a philosophical behaviour, and this within a reasonable time, say a thousand discussion in 1949, where Alan Turing mentioned a machine years.”3 This “does not seem to be the case,” he said, and whose program, he said, would in practice be “impossible he went on to describe a counterexample: to find.” Turing used his unbreakable machine example to defeat an argument against the possibility of artificial I have set up on the Manchester computer a small intelligence. -
The Turing Guide
The Turing Guide Edited by Jack Copeland, Jonathan Bowen, Mark Sprevak, and Robin Wilson • A complete guide to one of the greatest scientists of the 20th century • Covers aspects of Turing’s life and the wide range of his intellectual activities • Aimed at a wide readership • This carefully edited resource written by a star-studded list of contributors • Around 100 illustrations This carefully edited resource brings together contributions from some of the world’s leading experts on Alan Turing to create a comprehensive guide that will serve as a useful resource for researchers in the area as well as the increasingly interested general reader. “The Turing Guide is just as its title suggests, a remarkably broad-ranging compendium of Alan Turing’s lifetime contributions. Credible and comprehensive, it is a rewarding exploration of a man, who in his life was appropriately revered and unfairly reviled.” - Vint Cerf, American Internet pioneer JANUARY 2017 | 544 PAGES PAPERBACK | 978-0-19-874783-3 “The Turing Guide provides a superb collection of articles £19.99 | $29.95 written from numerous different perspectives, of the life, HARDBACK | 978-0-19-874782-6 times, profound ideas, and enormous heritage of Alan £75.00 | $115.00 Turing and those around him. We find, here, numerous accounts, both personal and historical, of this great and eccentric man, whose life was both tragic and triumphantly influential.” - Sir Roger Penrose, University of Oxford Ordering Details ONLINE www.oup.com/academic/mathematics BY TELEPHONE +44 (0) 1536 452640 POSTAGE & DELIVERY For more information about postage charges and delivery times visit www.oup.com/academic/help/shipping/. -
Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms”
“Alan Turing Centenary Year - India Celebrations” 3-Day Faculty Development Program on “Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms” Organized by Foundation for Advancement of Education and Research In association with Computer Society of India - Division II [Software] NASSCOM, IFIP TC - 1 & TC -2, ACM India Council Co-sponsored by P.E.S Institute of Technology Venue PES Institute of Technology, Hoskerehalli, Bangalore Date : 18 - 20 December 2012 Compiled by : Prof. K. Rajanikanth Trustee, FAER “Alan Turing Centenary Year - India Celebrations” 3-Day Faculty Development Program on “Alan M. Turing – Simplification in Intelligent Computing Theory and Algorithms” Organized by Foundation for Advancement of Education and Research In association with Computer Society of India - Division II [Software], NASSCOM, IFIP TC - 1 & TC -2, ACM India Council Co-sponsored by P.E.S Institute of Technology December 18 – 20, 2012 Compiled by : Prof. K. Rajanikanth Trustee, FAER Foundation for Advancement of Education and Research G5, Swiss Complex, 33, Race Course Road, Bangalore - 560001 E-mail: [email protected] Website: www.faer.ac.in PREFACE Alan Mathison Turing was born on June 23rd 1912 in Paddington, London. Alan Turing was a brilliant original thinker. He made original and lasting contributions to several fields, from theoretical computer science to artificial intelligence, cryptography, biology, philosophy etc. He is generally considered as the father of theoretical computer science and artificial intelligence. His brilliant career came to a tragic and untimely end in June 1954. In 1945 Turing was awarded the O.B.E. for his vital contribution to the war effort. In 1951 Turing was elected a Fellow of the Royal Society. -
Solitaire Playing Card Ciphers
SOLITAIRE PLAYING CARD CIPHERS To accompany the recent novel Cryptonomicon , Bruce Schneier, author of Applied Cryptography , developed a cipher using the 52 playing cards and two jokers called Solitare , which is described on the Counterpane web site. My Playing Card Cipher I, too, have now succumbed to the temptation to construct an alternative to Solitare . The basic cycle that takes a deck that has already been scrambled to produce a keystream operates as follows: Step 1: From the prepared deck (the order of the cards in it is the key), turn up, and deal out face up in a row, successive cards until the total of the cards (A=1, J=11, Q=12, K=13) is 8 or more. Step 2: If the last card dealt out in Step 1 is a J, Q, or K, take its value, otherwise take the total of the values of the cards dealt out in Step 1. (This gives a number from 8 to 17.) In the next row, deal out that many cards from the top of the deck. Step 3: Deal out the rest of the deck under that row, in successive rows that begin on the left, and end under the lowest card in the top row, the next lowest card in the top row, and so on, in rotation. A red card is lower than a black card of the same denomination, and when there are two cards of the same color and denomination, the first one in the row is considered lower. These first three steps may lead to a layout which looks like this: 7S QH 3D 6S 3C 2D QD 4S 8S JS JD 10H QC 8H 5H AC 6D KS 10C QS 9D 5D 2H 3S KD JH 2S 9C 9H 6H 8C 2C 7H JC 4C 8D 3H KC 7D 6C AH 4H 5C 10D 10S 7C 9S KH 4D AD 5S AS Step 4: Take the cards dealt out in Step 3, and pick them up by columns, starting with those under the lowest card in the row dealt out in Step 2. -
To Let • Licensed* • Character Space Restaurant & Bar • Prominent Frontage Ground Floor & Basement
46 SACKVILLE STREET MANCHESTER M1 3WF TO LET • LICENSED* • CHARACTER SPACE RESTAURANT & BAR • PROMINENT FRONTAGE GROUND FLOOR & BASEMENT Location Lease Located on Sackville Street at its junction with Brazil Street The premises are to be made available on the basis of a new lease for and between Canal Street and Whitworth Street, opposite a term to be agreed on full repairing and insuring terms (by way of Sackville Gardens. Manchester New Square is close by, service charge). comprising 350 apartments due for completion at the beginning of 2021. A short distance from Piccadilly with Metro, Rail and Bus Interchange as well as car parks close by. Daniel Harris & Co www.dh-property.co.uk 46 SACKVILLE STREET Description Legals The premises comprise fully fitted restaurant (with bar) Each party to bear their own legal fees incurred in this transaction. premises over ground and lower ground floors. Accommodation Planning The premises currently have A3 Planning Consent. 2 Ground: 1,625 sq ft 151 m 2 Basement: 2,131 sq ft 198 m Licencing EPC We understand the premises licence currently allows for the following trading hours: EPC RATING: TO BE CONFIRMED Mon-Wed 11.00 am - 02.00 am Thurs – Sat 11.00 am - 04.00 am Sunday 11.00 am - 03.00 am *Interested parties are advised to make their own enquiries with the relevant authority. COSTS RENT SERVICE CHARGE £50,000 Further information on request Exclusive of VAT Exclusive of VAT | Inclusive of Buildings Insurance RATES VAT RATEABLE VALUE: £62,000 ALL FIGURES ARE SHOWN EXCLUSIVE OF, BUT ARE RATES PAYABLE: £30,442 PA (2019/2020) LIABLE TO, VAT. -
Semantics and Syntax a Legacy of Alan Turing Scientific Report
Semantics and Syntax A Legacy of Alan Turing Scientific Report Arnold Beckmann (Swansea) S. Barry Cooper (Leeds) Benedikt L¨owe (Amsterdam) Elvira Mayordomo (Zaragoza) Nigel P. Smart (Bristol) 1 Basic theme and background information Why was the programme organised on this particular topic? The programme Semantics and Syn- tax was one of the central activities of the Alan Turing Year 2012 (ATY). The ATY was the world-wide celebration of the life and work of the exceptional scientist Alan Mathison Turing (1912{1954) with a particu- lar focus on the places where Turing has worked during his life: Cambridge, Bletchley Park, and Manchester. The research programme Semantics and Syntax took place during the first six months of the ATY in Cam- bridge, included Turing's 100th birthday on 23 June 1912 at King's College, and combined the character of an intensive high-level research semester with outgoing activities as part of the centenary celebrations. The programme had xx visiting fellows, xx programme participants, and xx workshop participants, many of which were leaders of their respective fields. Alan Turing's work was too broad for a coherent research programme, and so we focused on only some of the areas influenced by this remarkable scientists: logic, complexity theory and cryptography. This selection was motivated by a common phenomenon of a divide in these fields between aspects coming from logical considerations (called Syntax in the title of the programme) and those coming from structural, mathematical or algorithmic considerations (called Semantics in the title of the programme). As argued in the original proposal, these instances of the syntax-semantics divide are a major obstacle for progress in our fields, and the programme aimed at bridging this divide. -
Intelligence Without Reason
Intelligence Without Reason Rodney A. Brooks MIT Artificial Intelligence Lab 545 Technology Square Cambridge, MA 02139, USA Abstract certain modus operandi over the years, which includes a particular set of conventions on how the inputs and out- Computers and Thought are the two categories puts to thought and reasoning are to be handled (e.g., that together define Artificial Intelligence as a the subfield of knowledge representation), and the sorts discipline. It is generally accepted that work in of things that thought and reasoning do (e.g,, planning, Artificial Intelligence over the last thirty years problem solving, etc.). 1 will argue that these conven has had a strong influence on aspects of com- tions cannot account for large aspects of what goes into puter architectures. In this paper we also make intelligence. Furthermore, without those aspects the va the converse claim; that the state of computer lidity of the traditional Artificial Intelligence approaches architecture has been a strong influence on our comes into question. I will also argue that much of the models of thought. The Von Neumann model of landmark work on thought has been influenced by the computation has lead Artificial Intelligence in technological constraints of the available computers, and particular directions. Intelligence in biological thereafter these consequences have often mistakenly be systems is completely different. Recent work in come enshrined as principles, long after the original im behavior-based Artificial Intelligence has pro petus has disappeared. duced new models of intelligence that are much closer in spirit to biological systems. The non- From an evolutionary stance, human level intelligence Von Neumann computational models they use did not suddenly leap onto the scene. -
OFFLINE GAMING VS CLOUD GAMING (ONLINE GAMING) Mr
ISSN: 0974-3308, VOL. 11, NO. 2 DECEMBER 2018 @ SRIMCA 99 OFFLINE GAMING VS CLOUD GAMING (ONLINE GAMING) Mr. Amit Khatri Abstract—Games has always been a major source of entertainment in every generation and so exiting their history is, because it has various factor involved like Video Games Industry and various generations of video games. Due to improvements in graphics, a revolution has occurred in computer games. Storage for Video Games has always been a problem whether it is a Gaming Console or a PC but has been resolved generation by generation. Games also attracted the uninterested audience. Offline Gaming has been very popular for a year but has various drawbacks. Cloud Gaming is the resolution against Offline Gaming. This paper talks about how Cloud Gaming is taking place of Offline Gaming with much powerful hardware systems and processes. Keywords—Gaming, Cloud Gaming, Gaming PC, Gaming Console, Video Games. I. GAMING AND ITS HISTORY Computerized game playing, whether it is over a personal computer, mobile phone or a video game console can be referred to as Gaming. An individual who plays video games is recognized as a gamer [1]. In every generation of technology evolution, graphics of the game have been improved. When we think the history of video games we usually think of games like Tic- tac-toe, Tetris, Pacman, pong and many more but now these games use graphics seems like reality. In the 1950s, People can’t think of playing card games such as Solitaire, Blackjack, Hearts, Spider Solitaire and so on, on tv or computer but now the stage has reached more ahead from that [1]. -
The Enigma Behind the Good–Turing Formula
Snapshots of modern mathematics № 8/2021 from Oberwolfach The Enigma behind the Good–Turing formula Fadoua Balabdaoui • Yulia Kulagina Finding the total number of species in a population based on a finite sample is a difficult but practically important problem. In this snapshot, we will at- tempt to shed light on how during World War II, two cryptanalysts, Irving J. Good and Alan M. Turing, discovered one of the most widely applied formulas in statistics. The formula estimates the probability of missing some of the species in a sample drawn from a heterogeneous population. We will provide some intuition behind the formula, show its wide range of applications, and give a few technical details. 1 The species richness problem 1.1 Motivation and example Say we have a population comprising individuals drawn from K (possibly infinite) distinct species, among which a lot of species may be rare, andafew are very common. Our goal is to either estimate the frequencies of the species in the population based on the number of their occurrences in a finite sample, or simply to estimate the number of classes K in the population from the sample. 1 1 The term “population frequency” commonly refers to the true (unknown) proportion. It is usually contrasted with the word “empirical” that the reader will encounter later. 1 We use the word “species” in a broad sense. It may refer to flora and fauna, to types of errors in a software system, to celestial bodies in the universe, to word-types in a language, to connected components in a graph, and so on. -
Playfair Decoder Download
Playfair decoder download playfair cipher decoder free download. BitShade BitShade is a graphic utility to encrypt/decrypt with AES and/or base64 encode/decode a file. This is a simple application that uses the Playfair cipher to encode messages."The Playfair cipher or Playfair square is a manual symmetric. PlayFair Cipher is a symmetrical encryption process based on a So if you need to download the PlayFair Cipher script for offline use, for you, your company or PlayFair Decoder · How to encrypt using · How to decrypt PlayFair. Playfair Decoder Cipher Encryption Decryption Software Direct Link: >>> Playfair Decoder Cipher Encryption Decryption Software. Playfair Cipher Tool. To encipher a message, replace the example key with your own word or phrase, replace the example message(s) and click on the Submit. The Playfair cipher or Playfair square or Wheatstone-Playfair cipher or Wheatstone cipher is a .. Create a book · Download as PDF · Printable version. The Playfair cipher is a digraph substitution cipher. It employs a table where one letter of the alphabet is omitted, and the letters are arranged in a 5x5 grid. Cipher tools - Contains: vigenere, mobile cipher, morse code, ascii code, binary code, oct braille decoder, fake text, front to back text, mathias sandorf, playfair. Playfair Cipher, free playfair cipher software downloads. The Playfair cipher or Playfair square is a manual symmetric. PlayFair Cipher is a symmetrical encryption process based on a So if you need to download the. Download book PDF In this paper we will enhance the traditional Blick Playfair Cipher by encrypting the Download to read the full conference paper text. -
The Essential Turing Reviewed by Andrew Hodges
Book Review The Essential Turing Reviewed by Andrew Hodges The Essential Turing the Second World War, with particular responsibility A. M. Turing, B. Jack Copeland, ed. for the German Enigma-enciphered naval commu- Oxford University Press, 2004 nications, though this work remained secret until US$29.95, 662 pages the 1970s and only in the 1990s were documents ISBN 0198250800 from the time made public. Many mathematicians would see Turing as a The Essential Turing is a selection of writings of the hero for the 1936 work alone. But he also makes a British mathematician Alan M. Turing (1912–1954). striking exemplar of mathematical achievement in Extended introductions and annotations are added his breadth of attack. He made no distinction be- by the editor, the New Zealand philosopher B. Jack tween “pure” and “applied” and tackled every kind Copeland, and there are some supplementary pa- of problem from group theory to biology, from ar- pers and commentaries by other authors. Alan Tur- guing with Wittgenstein to analysing electronic ing was the founder of the theory of computabil- component characteristics—a strategy diametri- ity, with his paper “On Computable numbers, with cally opposite to today’s narrow research training. an application to the Entscheidungsproblem” (Tur- The fact that few had ever heard of him when he ing 1936). This, a classic breakthrough of twenti- died mysteriously in 1954, and that his work in de- eth century mathematics, was written when he was feating Nazi Germany remained unknown for so twenty-three. In the course of this work in mathe- long, typifies the unsung creative power of math- matical logic, he defined the concept of the uni- ematics which the public—indeed our own stu- versal machine. -
29 Yudhvir Yogesh Chaba.Pmd
International Journal of Information Technology and Knowledge Management July-December 2008, Volume 1, No. 2, pp. 475-483 INORMATION THEORY TESTS BASED PERORMANCE EVALUATION O CRYPTOGRAPHIC TECHNIQUES YUDHVIR SINGH & YOGESH CHABA ABSTRACT Cryptography is an emerging technology, which is important for network security. Research on cryptography is still in its developing stages and considerable research effort is required. This paper is devoted to the security and attack aspects of cryptographic techniques. We have discussed the dominant issues of security and various information theory characteristics of various cipher texts. The simulation based information theory tests such as Entropy, !loating !requency, Histogram, N-Gram, Autocorrelation and Periodicity on cipher text are done. The simulation based randomness tests such as !requency Test, Poker Test, Runs Test and Serial Test on cipher text are done. !inally, we have benchmarked some well-known cryptographic algorithms in search for the best compromise in security. Keywords: Cryptography, Ciphers, Secret Key Cryptography, Security, Attack, Attacks Analysis and Performance. 1. INTRODUCTION Common design criterion for every cryptosystem is that the algorithms used for encryption and decryption are publicly known and that the security of the scheme only relies on the secrecy of a short secret called the key [1][2]. !igure 1 shows the brief overview of all parts of an encryption system. It considers classical symmetric encryption only, i.e., both the sender and the receiver of a secret message share a common secret key K. An efficient encryption algorithm E, takes the key and a plaintext and outputs a ciphertext, and an efficient decryption algorithm D, takes the key and a ciphertext and outputs a plaintext.