Stellar Structure and the Sun 8.1 Stellar Structure Basics How Stars Work • Hydrostatic Equilibrium: Gas and Radiation Pressure Balance the Gravity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atomic Diffusion in Star Models of Type Earlier Than G
A&A 390, 611–620 (2002) Astronomy DOI: 10.1051/0004-6361:20020768 & c ESO 2002 Astrophysics Atomic diffusion in star models of type earlier than G P. Morel and F. Thevenin ´ D´epartement Cassini, UMR CNRS 6529, Observatoire de la Cˆote d’Azur, BP 4229, 06304 Nice Cedex 4, France Received 7 February 2002 / Accepted 15 May 2002 Abstract. We introduce the mixing resulting from the radiative diffusivity associated with the radiative viscosity in the calcula- tion of stellar evolution models. We find that the radiative diffusivity significantly diminishes the efficiency of the gravitational settling in the external layers of stellar models corresponding to types earlier than ≈G. The surface abundances of chemical species predicted by the models are successfully compared with the abundances determined in members of the Hyades open cluster. Our modeling depends on an efficiency parameter, which is evaluated to a value close to unity, that we calibrate in this study. Key words. diffusion – stars: abundances – stars: evolution – Hertzsprung-Russell (HR) and C-M diagrams 1. Introduction stars do not show low surface metallicities. This large helium depletion is not likely to be observed in main sequence B-stars, ff Microscopic di usion, sometimes named “atomic” or “ele- as supported by their spectral classification which is mainly ff ment” di usion, when used in the computation of models of based on the relative strength of the helium spectral lines. main sequence stars produces (see Chaboyer et al. 2001 for The large efficiency of the atomic diffusion in the outer lay- an abridged revue) a change in the surface abundances from ers results from the large temperature and pressure gradients. -
A Bayesian Estimation of the Helioseismic Solar Age (Research Note)
A&A 580, A130 (2015) Astronomy DOI: 10.1051/0004-6361/201526419 & c ESO 2015 Astrophysics A Bayesian estimation of the helioseismic solar age (Research Note) A. Bonanno1 and H.-E. Fröhlich2 1 INAF, Osservatorio Astrofisico di Catania, via S. Sofia, 78, 95123 Catania, Italy e-mail: [email protected] 2 Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany Received 27 April 2015 / Accepted 9 July 2015 ABSTRACT Context. The helioseismic determination of the solar age has been a subject of several studies because it provides us with an indepen- dent estimation of the age of the solar system. Aims. We present the Bayesian estimates of the helioseismic age of the Sun, which are determined by means of calibrated solar models that employ different equations of state and nuclear reaction rates. Methods. We use 17 frequency separation ratios r02(n) = (νn,l = 0 −νn−1,l = 2)/(νn,l = 1 −νn−1,l = 1) from 8640 days of low- BiSON frequen- cies and consider three likelihood functions that depend on the handling of the errors of these r02(n) ratios. Moreover, we employ the 2010 CODATA recommended values for Newton’s constant, solar mass, and radius to calibrate a large grid of solar models spanning a conceivable range of solar ages. Results. It is shown that the most constrained posterior distribution of the solar age for models employing Irwin EOS with NACRE reaction rates leads to t = 4.587 ± 0.007 Gyr, while models employing the Irwin EOS and Adelberger, et al. (2011, Rev. -
X-Ray Sun SDO 4500 Angstroms: Photosphere
ASTR 8030/3600 Stellar Astrophysics X-ray Sun SDO 4500 Angstroms: photosphere T~5000K SDO 1600 Angstroms: upper photosphere T~5x104K SDO 304 Angstroms: chromosphere T~105K SDO 171 Angstroms: quiet corona T~6x105K SDO 211 Angstroms: active corona T~2x106K SDO 94 Angstroms: flaring regions T~6x106K SDO: dark plasma (3/27/2012) SDO: solar flare (4/16/2012) SDO: coronal mass ejection (7/2/2012) Aims of the course • Introduce the equations needed to model the internal structure of stars. • Overview of how basic stellar properties are observationally measured. • Study the microphysics relevant for stars: the equation of state, the opacity, nuclear reactions. • Examine the properties of simple models for stars and consider how real models are computed. • Survey (mostly qualitatively) how stars evolve, and the endpoints of stellar evolution. Stars are relatively simple physical systems Sound speed in the sun Problem of Stellar Structure We want to determine the structure (density, temperature, energy output, pressure as a function of radius) of an isolated mass M of gas with a given composition (e.g., H, He, etc.) Known: r Unknown: Mass Density + Temperature Composition Energy Pressure Simplifying assumptions 1. No rotation à spherical symmetry ✔ For sun: rotation period at surface ~ 1 month orbital period at surface ~ few hours 2. No magnetic fields ✔ For sun: magnetic field ~ 5G, ~ 1KG in sunspots equipartition field ~ 100 MG Some neutron stars have a large fraction of their energy in B fields 3. Static ✔ For sun: convection, but no large scale variability Not valid for forming stars, pulsating stars and dying stars. 4. -
Stellar Magnetic Activity – Star-Planet Interactions
EPJ Web of Conferences 101, 005 02 (2015) DOI: 10.1051/epjconf/2015101005 02 C Owned by the authors, published by EDP Sciences, 2015 Stellar magnetic activity – Star-Planet Interactions Poppenhaeger, K.1,2,a 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambrigde, MA 02138, USA 2 NASA Sagan Fellow Abstract. Stellar magnetic activity is an important factor in the formation and evolution of exoplanets. Magnetic phenomena like stellar flares, coronal mass ejections, and high- energy emission affect the exoplanetary atmosphere and its mass loss over time. One major question is whether the magnetic evolution of exoplanet host stars is the same as for stars without planets; tidal and magnetic interactions of a star and its close-in planets may play a role in this. Stellar magnetic activity also shapes our ability to detect exoplanets with different methods in the first place, and therefore we need to understand it properly to derive an accurate estimate of the existing exoplanet population. I will review recent theoretical and observational results, as well as outline some avenues for future progress. 1 Introduction Stellar magnetic activity is an ubiquitous phenomenon in cool stars. These stars operate a magnetic dynamo that is fueled by stellar rotation and produces highly structured magnetic fields; in the case of stars with a radiative core and a convective outer envelope (spectral type mid-F to early-M), this is an αΩ dynamo, while fully convective stars (mid-M and later) operate a different kind of dynamo, possibly a turbulent or α2 dynamo. These magnetic fields manifest themselves observationally in a variety of phenomena. -
Solar Radius Determined from PICARD/SODISM Observations and Extremely Weak Wavelength Dependence in the Visible and the Near-Infrared
A&A 616, A64 (2018) https://doi.org/10.1051/0004-6361/201832159 Astronomy c ESO 2018 & Astrophysics Solar radius determined from PICARD/SODISM observations and extremely weak wavelength dependence in the visible and the near-infrared M. Meftah1, T. Corbard2, A. Hauchecorne1, F. Morand2, R. Ikhlef2, B. Chauvineau2, C. Renaud2, A. Sarkissian1, and L. Damé1 1 Université Paris Saclay, Sorbonne Université, UVSQ, CNRS, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France e-mail: [email protected] 2 Université de la Côte d’Azur, Observatoire de la Côte d’Azur (OCA), CNRS, Boulevard de l’Observatoire, 06304 Nice, France Received 23 October 2017 / Accepted 9 May 2018 ABSTRACT Context. In 2015, the International Astronomical Union (IAU) passed Resolution B3, which defined a set of nominal conversion constants for stellar and planetary astronomy. Resolution B3 defined a new value of the nominal solar radius (RN = 695 700 km) that is different from the canonical value used until now (695 990 km). The nominal solar radius is consistent with helioseismic estimates. Recent results obtained from ground-based instruments, balloon flights, or space-based instruments highlight solar radius values that are significantly different. These results are related to the direct measurements of the photospheric solar radius, which are mainly based on the inflection point position methods. The discrepancy between the seismic radius and the photospheric solar radius can be explained by the difference between the height at disk center and the inflection point of the intensity profile on the solar limb. At 535.7 nm (photosphere), there may be a difference of 330 km between the two definitions of the solar radius. -
Structure and Energy Transport of the Solar Convection Zone A
Structure and Energy Transport of the Solar Convection Zone A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ASTRONOMY December 2004 By James D. Armstrong Dissertation Committee: Jeffery R. Kuhn, Chairperson Joshua E. Barnes Rolf-Peter Kudritzki Jing Li Haosheng Lin Michelle Teng © Copyright December 2004 by James Armstrong All Rights Reserved iii Acknowledgements The Ph.D. process is not a path that is taken alone. I greatly appreciate the support of my committee. In particular, Jeff Kuhn has been a friend as well as a mentor during this time. The author would also like to thank Frank Moss of the University of Missouri St. Louis. His advice has been quite helpful in making difficult decisions. Mark Rast, Haosheng Lin, and others at the HAO have assisted in obtaining data for this work. Jesper Schou provided the helioseismic rotation data. Jorgen Christiensen-Salsgaard provided the solar model. This work has been supported by NASA and the SOHOjMDI project (grant number NAG5-3077). Finally, the author would like to thank Makani for many interesting discussions. iv Abstract The solar irradiance cycle has been observed for over 30 years. This cycle has been shown to correlate with the solar magnetic cycle. Understanding the solar irradiance cycle can have broad impact on our society. The measured change in solar irradiance over the solar cycle, on order of0.1%is small, but a decrease of this size, ifmaintained over several solar cycles, would be sufficient to cause a global ice age on the earth. -
Radiation Forces on Small Particles in the Solar System T
1CARUS 40, 1-48 (1979) Radiation Forces on Small Particles in the Solar System t JOSEPH A. BURNS Cornell University, 2 Ithaca, New York 14853 and NASA-Ames Research Center PHILIPPE L. LAMY CNRS-LAS, Marseille, France 13012 AND STEVEN SOTER Cornell University, Ithaca, New York 14853 Received May 12, 1978; revised May 2, 1979 We present a new and more accurate expression for the radiation pressure and Poynting- Robertson drag forces; it is more complete than previous ones, which considered only perfectly absorbing particles or artificial scattering laws. Using a simple heuristic derivation, the equation of motion for a particle of mass m and geometrical cross section A, moving with velocity v through a radiation field of energy flux density S, is found to be (to terms of order v/c) mi, = (SA/c)Qpr[(1 - i'/c)S - v/c], where S is a unit vector in the direction of the incident radiation,/" is the particle's radial velocity, and c is the speed of light; the radiation pressure efficiency factor Qpr ~ Qabs + Q~a(l - (cos a)), where Qabs and Q~c~ are the efficiency factors for absorption and scattering, and (cos a) accounts for the asymmetry of the scattered radiation. This result is confirmed by a new formal derivation applying special relativistic transformations for the incoming and outgoing energy and momentum as seen in the particle and solar frames of reference. Qpr is evaluated from Mie theory for small spherical particles with measured optical properties, irradiated by the actual solar spectrum. Of the eight materials studied, only for iron, magnetite, and graphite grains does the radiation pressure force exceed gravity and then just for sizes around 0. -
2. Astrophysical Constants and Parameters
2. Astrophysical constants 1 2. ASTROPHYSICAL CONSTANTS AND PARAMETERS Table 2.1. Revised May 2010 by E. Bergren and D.E. Groom (LBNL). The figures in parentheses after some values give the one standard deviation uncertainties in the last digit(s). Physical constants are from Ref. 1. While every effort has been made to obtain the most accurate current values of the listed quantities, the table does not represent a critical review or adjustment of the constants, and is not intended as a primary reference. The values and uncertainties for the cosmological parameters depend on the exact data sets, priors, and basis parameters used in the fit. Many of the parameters reported in this table are derived parameters or have non-Gaussian likelihoods. The quoted errors may be highly correlated with those of other parameters, so care must be taken in propagating them. Unless otherwise specified, cosmological parameters are best fits of a spatially-flat ΛCDM cosmology with a power-law initial spectrum to 5-year WMAP data alone [2]. For more information see Ref. 3 and the original papers. Quantity Symbol, equation Value Reference, footnote speed of light c 299 792 458 m s−1 exact[4] −11 3 −1 −2 Newtonian gravitational constant GN 6.674 3(7) × 10 m kg s [1] 19 2 Planck mass c/GN 1.220 89(6) × 10 GeV/c [1] −8 =2.176 44(11) × 10 kg 3 −35 Planck length GN /c 1.616 25(8) × 10 m[1] −2 2 standard gravitational acceleration gN 9.806 65 m s ≈ π exact[1] jansky (flux density) Jy 10−26 Wm−2 Hz−1 definition tropical year (equinox to equinox) (2011) yr 31 556 925.2s≈ π × 107 s[5] sidereal year (fixed star to fixed star) (2011) 31 558 149.8s≈ π × 107 s[5] mean sidereal day (2011) (time between vernal equinox transits) 23h 56m 04.s090 53 [5] astronomical unit au, A 149 597 870 700(3) m [6] parsec (1 au/1 arc sec) pc 3.085 677 6 × 1016 m = 3.262 ...ly [7] light year (deprecated unit) ly 0.306 6 .. -
Stars IV Stellar Evolution Attendance Quiz
Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today’s Topics Stellar Evolution • An alien visits Earth for a day • A star’s mass controls its fate • Low-mass stellar evolution (M < 2 M) • Intermediate and high-mass stellar evolution (2 M < M < 8 M; M > 8 M) • Novae, Type I Supernovae, Type II Supernovae An Alien Visits for a Day • Suppose an alien visited the Earth for a day • What would it make of humans? • It might think that there were 4 separate species • A small creature that makes a lot of noise and leaks liquids • A somewhat larger, very energetic creature • A large, slow-witted creature • A smaller, wrinkled creature • Or, it might decide that there is one species and that these different creatures form an evolutionary sequence (baby, child, adult, old person) Stellar Evolution • Astronomers study stars in much the same way • Stars come in many varieties, and change over times much longer than a human lifetime (with some spectacular exceptions!) • How do we know they evolve? • We study stellar properties, and use our knowledge of physics to construct models and draw conclusions about stars that lead to an evolutionary sequence • As with stellar structure, the mass of a star determines its evolution and eventual fate A Star’s Mass Determines its Fate • How does mass control a star’s evolution and fate? • A main sequence star with higher mass has • Higher central pressure • Higher fusion rate • Higher luminosity • Shorter main sequence lifetime • Larger -
Solar Radiation
5 Solar Radiation In this chapter we discuss the aspects of solar radiation, which are important for solar en- ergy. After defining the most important radiometric properties in Section 5.2, we discuss blackbody radiation in Section 5.3 and the wave-particle duality in Section 5.4. Equipped with these instruments, we than investigate the different solar spectra in Section 5.5. How- ever, prior to these discussions we give a short introduction about the Sun. 5.1 The Sun The Sun is the central star of our solar system. It consists mainly of hydrogen and helium. Some basic facts are summarised in Table 5.1 and its structure is sketched in Fig. 5.1. The mass of the Sun is so large that it contributes 99.68% of the total mass of the solar system. In the center of the Sun the pressure-temperature conditions are such that nuclear fusion can Table 5.1: Some facts on the Sun Mean distance from the Earth 149 600 000 km (the astronomic unit, AU) Diameter 1392000km(109 × that of the Earth) Volume 1300000 × that of the Earth Mass 1.993 ×10 27 kg (332 000 times that of the Earth) Density(atitscenter) >10 5 kg m −3 (over 100 times that of water) Pressure (at its center) over 1 billion atmospheres Temperature (at its center) about 15 000 000 K Temperature (at the surface) 6 000 K Energy radiation 3.8 ×10 26 W TheEarthreceives 1.7 ×10 18 W 35 36 Solar Energy Internal structure: core Subsurface ows radiative zone convection zone Photosphere Sun spots Prominence Flare Coronal hole Chromosphere Corona Figure 5.1: The layer structure of the Sun (adapted from a figure obtained from NASA [ 28 ]). -
Apparent and Absolute Magnitudes of Stars: a Simple Formula
Available online at www.worldscientificnews.com WSN 96 (2018) 120-133 EISSN 2392-2192 Apparent and Absolute Magnitudes of Stars: A Simple Formula Dulli Chandra Agrawal Department of Farm Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi - 221005, India E-mail address: [email protected] ABSTRACT An empirical formula for estimating the apparent and absolute magnitudes of stars in terms of the parameters radius, distance and temperature is proposed for the first time for the benefit of the students. This reproduces successfully not only the magnitudes of solo stars having spherical shape and uniform photosphere temperature but the corresponding Hertzsprung-Russell plot demonstrates the main sequence, giants, super-giants and white dwarf classification also. Keywords: Stars, apparent magnitude, absolute magnitude, empirical formula, Hertzsprung-Russell diagram 1. INTRODUCTION The visible brightness of a star is expressed in terms of its apparent magnitude [1] as well as absolute magnitude [2]; the absolute magnitude is in fact the apparent magnitude while it is observed from a distance of . The apparent magnitude of a celestial object having flux in the visible band is expressed as [1, 3, 4] ( ) (1) ( Received 14 March 2018; Accepted 31 March 2018; Date of Publication 01 April 2018 ) World Scientific News 96 (2018) 120-133 Here is the reference luminous flux per unit area in the same band such as that of star Vega having apparent magnitude almost zero. Here the flux is the magnitude of starlight the Earth intercepts in a direction normal to the incidence over an area of one square meter. The condition that the Earth intercepts in the direction normal to the incidence is normally fulfilled for stars which are far away from the Earth. -
The Solar Wind in Time: a Change in the Behaviour of Older Winds?
MNRAS 000,1{11 (2017) Preprint 14 February 2018 Compiled using MNRAS LATEX style file v3.0 The solar wind in time: a change in the behaviour of older winds? D. O´ Fionnag´ain? and A. A. Vidotto School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland Accepted XXX. Received YYY; in original form ZZZ ABSTRACT In the present paper, we model the wind of solar analogues at different ages to in- vestigate the evolution of the solar wind. Recently, it has been suggested that winds of solar type stars might undergo a change in properties at old ages, whereby stars older than the Sun would be less efficient in carrying away angular momentum than what was traditionally believed. Adding to this, recent observations suggest that old solar-type stars show a break in coronal properties, with a steeper decay in X-ray lumi- nosities and temperatures at older ages. We use these X-ray observations to constrain the thermal acceleration of winds of solar analogues. Our sample is based on the stars from the `Sun in time' project with ages between 120-7000 Myr. The break in X-ray properties leads to a break in wind mass-loss rates (MÛ ) at roughly 2 Gyr, with MÛ (t < 2 Gyr) / t−0:74 and MÛ (t > 2 Gyr) / t−3:9. This steep decay in MÛ at older ages could be the reason why older stars are less efficient at carrying away angular mo- mentum, which would explain the anomalously rapid rotation observed in older stars. We also show that none of the stars in our sample would have winds dense enough to produce thermal emission above 1-2 GHz, explaining why their radio emissions have not yet been detected.