Feb. 04, University of Virginia

1 2008 of IRON Superconductors Outline

 Introduction  Point Contact (PC) spectroscopy Transfer Torque ( STT ) Effects  Point Contact Andreev Reflection ( PCAR ) spectroscopy Spin polarization Superconducting gap Pseudogaps ?  Summary

4 Discovery of

Liquefied Helium (1908), b.p. = 4.17 K

Discovered superconductivity (1911) in Hg T C = 4.21 K

Nobel prize (1913)

Heike Kamerlingh Onnes ρ

T 0 C T The saga of superconductivity began. 5 Perfect Conductivity and Perfect

Zero resistance Perfect conductivity I Persistent current I over 10 5 years

Meissner effect Perfect diamagnetism

No field inside SC

6 Type I and Type II Superconductors

Type I (Pb, Al, etc) Type II (NbTi, Nb 3Sn, etc)

B ≠ 0

B = 0 B = 0

Meissner (H < H C1 ) Meissner (H < H C) Mixed state (H C1 < H < H C2 ) HC2 (0) very large HC(0) ≈ 0.1 Tesla

7 Vortices in Mixed State

Abrikosov Vortex Lattices in Superconductors (1957)

Nobel Prize (2003)

2 ΦΦΦοοο = hc/2e ≈ 20 G-µm

Hess (1989) (STM, NbSe ) Essmann (1967) (Bitter, Pb) 2

8

1962 Theoretical prediction of Josephson effect 1973 Nobel prize

SC1 SC2

= φ Brian D. Josephson I(t) IC sin( (t)) φ: phase difference

h − Φ = = .2 067833636 ×10 15 Wb 0 2e

Superconducting Quantum Interference Device (SQUID ) Most sensitive detector 9 Bardeen-Cooper-Schrieffer (BCS) Theory (1957)

e ξ e

Cooper pairs Bardeen-Cooper-Schrieffer Nobel Prize, 1972

Superconducting Gap ∆∆∆(0)(0)(0) ∆∆∆ 2 /kBTC = 3.53 Eg = 2 10 Very large H c2 for Type II Superconductors

High H C2 is necessary Superconducting magnets Magnetic levitation

High TC is always beneficial

11 TC vs. Discovery Year

12 Discovery of Cuprates (1986)

Discovered (La-Ba)2CuO 4 in 1986, T C = 30 K

Nobel prize, 1987 Alex Müller and Georg Bednorz

CuO 2 Plane

La 2CuO 4

(La-Sr)2CuO 4

(La-Ba)2CuO 4 ∼ TC 30 – 40 K

13 Cuprates

YBa Cu O T = 90 K 2 3 7 C Cuprates TC

Cu chains (La-Sr)2CuO 4 35 K

YBa 2Cu 3O7 90 K

Bi 2Sr 2Ca 2Cu 3O10 105 K Cu planes TlBa 2Ca 2Cu 3O9 125 K

Cu planes HgBa 2Ca 2Cu 3O8 140 K

Cu chains Cu O Cu

CuO 2 plane Responsible for high T and a host of unusual properties C 14 TC vs. Discovery Year

15 Mind the Gap

16 s-wave and p-wave Superconductor

∆ s-wave ( isotropic ) Fermi sea Conventional SC (Nb, Pb, Al,…) TC < 25 K

+ p-wave 3 Fermi sea Superfluid He, Sr 2RuO 4(?) ∼ TC 1 mK - 1 K -

17 d-wave Superconductor

Fisher et al., RMP 79 , 353 (2007)

+

- Fermi sea -

+

d 2 2 x − y d-wave symmetry Parent compound: Mott

Cuprates: CuO 2 plane TC < 160 K

18 New Oxypnictides Fe Superconductors (2008)

“Single layer” SmFeAsO Pnictogen (P, As, Sb)

(SmO) +

(FeAs) -

(SmO) +

No CuO 2 plane Contains Fe Contains As

19 Discovery of Fe-Superconductors (2008) (SDW)

TSDW

TC

New Fe-SC: ∼ SmFeAsO 1-xFx (1111) TC 55K Parent compound: SmFeAsO metallic Spin density wave ( SDW ) ∼ 160K

20 Fe -Superconductors New Fe-SC: ∼ SmFeAsO 1-xFx (1111), TC 55K Parent compound: SmFeAsO metallic Spin density wave ( SDW ) at 160K ∆ = ? What value ? What structure ? What temperature dependence ? Are there pseudogaps ?

21 Point Contact

I+ ρ = V+ RMaxwell a >> l, diffusive I- 2a 4ρl 3π a V- R = 1( + ) Wexler 3πa2 8 l a 4ρl R = Sharvin 3πa2 a << l, ballistic

Maxwell ρρρ: resistivity a : contact size l : mean free path

Different regime with different Sharvin ρ = 1 µΩ-cm

22 Point Contact Spectroscopy

 spectra Phonon I+  Spin transfer torque effect V+ Contact size: a ∼ nm I- Current: I = 1 mA 10 2 V- Current density: j = 10 A/cm  Point Contact Andreev Reflection a Spin polarization Superconducting gap  Thermal transport ballistic, diffusive  …

23 Spin Transfer Torque Effect

Contact size: a ∼∼∼ nm Current: I = 1 mA Current density: j = 10 10 A/cm 2

T. Y. Chen, Y. Ji and C. L. Chien, Appl. Phys. Lett. 84 , 380 (2004). T. Y. Chen, Y. Ji, C. L. Chien and M. D. Stiles, Phys. Rev. Lett. 93 , 026601 (2004). T. Y. Chen, S. X. Huang, C. L. Chien and M. D. Stiles, Phys. Rev. Lett. 96 , 207203 (2006).

24 Spin Polarization ( P)

N (E ) − N (E ) P = ↑ F ↓ F 0 + N(E F): density of states at Fermi energy N↑ (EF ) N↓ (EF )

P: crucial for

25 Point Contact Andreev Reflection ( PCAR )

I+ Tip: V+ Conducting, semiconducting, I- superconducting V-

a Sample: Conducting, semiconducting, superconducting

Normal metal/superconductor interface : Andreev Reflection

Measures spin polarization (P) and superconducting gap (∆∆∆)

26 Determination of Spin Polarization by PCAR Normal metal /SuperconductorHalf metal /Superconductor Any metal/ Superconductor

-∆∆∆ +∆∆∆

-∆∆∆ +∆∆∆ -∆∆∆ +∆∆∆ 0 < P < 1

G(0)/ Gn = 2(1-P) G(0)/ G = 2 P = 0G(0)/ G = 0 P = 1 P of metal,n and ∆∆∆of SC cann be determined.

Ideal contact, clean limit 27 Interfacial Scattering ( Z) and inelastic scattering ( ΓΓΓ)

 Interfacial: Z suppresses in-gap conductance

 Inelastic: ΓΓΓ affects conductance at gap

 Thermal: T smears out conductance

Analyzing entire conductance

Blonder-Tinkham-Klapwijk (BTK) theory 28 Point Contact Andreev Reflection Spectroscopy

Using known SC (Nb, Pb) to determine P of metal • S. X. Huang, T. Y. Chen, and C. L. Chien, Appl. Phys. Lett. 92 , 242509 (2008). • T. Y. Chen, C. L. Chien and C. Petrovic, Appl. Phys. Lett. 91 , 142505 (2007). • C. Leighton, M. Manno, A. Cady, J. W. Freeland, L. Wang, K. Umemoto, R. M. Wentzcovitch, T. Y. Chen, C. L. Chien, P. L. Kuhns, M. J. R. Hoch, A. P. Reyes, W. G. Moulton, E. D. Dahlberg, J. Checkelsky and J. Eckert, J. Phys.: Condens. Matter 19 , 315219(2007) (invited review). • L. Wang, T. Y. Chen, C. L. Chien, and C. Leighton, Appl. Phys. Lett. 88 , 232509 (2006). • L. Wang, T. Y. Chen, C. L. Chien, J. G. Checkelsky, J. C. Eckert, E. D. Dahlberg, K. Umemoto, R. M. Wentzcovitch , and C. Leighton, Phys. Rev. B 73 , 144402 (2006). • L. Wang, K. Umemoto, R.M. Wentzcovitch, T. Y. Chen, C.L. Chien, J.G. Checkelsky, J.C. Eckert, E.D. Dahlberg and C. Leighton, Phys. Rev. Lett. 94 , 056602 (2005). • L. Wang, T. Y. Chen and C. Leighton, Phys. Rev. B 69 , 094412 (2004). • Lance Ritchie and Gang Xiao, Y. Ji, T. Y. Chen, C. L. Chien, Ming Zhang, Jinglan Chen, Zhuhong Liu, Guangheng Wu, and X. X. Zhang, Phys. Rev. B 68 , 104430 (2003).

Using known metal (Au, Co) to determine Gap of SC

Nb, MgB 2, SmFeAsO 0.85 F0.15 T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, Nature 453 , 1224 (2008)

29 AR Spectroscopy Measurements of Gaps

One gap of Nb ( TC = 9.27 K) ∆ Nb = 1.42 meV

Two gaps of MgB 2 (TC = 36.5 K) ∆ L = 6.75 meV ∆ S = 2.75 meV

30 Superconducting SmFeAsO 1-xFx (x=0.15, 0.18, 0.30)

Gold tip I+ V+ I- V-

Fe-SCs

31 SmFeAsO 0.85 F0.15 (T C = 42 K) Small T=4.5K ∆ contact Same 2∆∆ for all G(V)  Structure: ∼ isotropic  Value: 2∆ = 13.34 ± 0.71 meV ∆ 2 /kBTC = 3.68 close to 3.53 (BCS s -wave)

Complications: o Extra features to ± 100 mV due to SC o Slanted background nothing to do with SC mismatch of Fermi energy o Emergence of ZBA due to SC Large contact o Small effect in 9 T field at 4.5K 32 Emergence of Zero Bias Anomaly ( ZBA )

• Emerges systematically • ZBA obscures gap • ZBA due to SC • H field has negligible effect

 ZBA is a signature of d-wave pairing (???).  ZBA depends strongly on B field, whereas gap does not (???). (A scheme to obtain gap structure by subtraction) 33 ZBAs in s-wave Superconductors

ZBA is a signature of d-wave pairing (???).

d-wave may give ZBA.

But, ZBA does not imply d-wave since s-wave also gives ZBA.

P. Xiong, G. Xiao, R. B. Laibowitz, Phys. Rev. Lett. 71 , 1907 (1993) 34 Neither Gap nor ZBA depends strongly on H

∆∆∆H = 0.5 T

Subtraction does not reveal the superconducting gap 35 Zero Bias Anomaly ( ZBA )

 ZBA is a signature of d-wave pairing (???).

d-wave may give ZBA.

But, ZBA does not imply d-wave since s-wave also gives ZBA.

 ZBA depends strongly on B field, whereas gap does not (???). (A scheme to obtain gap structure by subtraction)

Neither ZBA nor gap depends strongly on B field.

Subtraction method does not work.

36 A real gap is independent of contacts

SmFeAsO 0.70 F0.30 Ω every 0.3 Small R

Large R

37 SmFeAsO 0.82 F0.18 (T C = 46.5 K), SmFeAsO 0.70 F0.30 (T C = 53.75 K)

SmFeAsO 0.82 F0.18: TC = 46.5 K ∆ = 7.26 meV ∆ 2 /k BTC = 3.62

SmFeAsO 0.70 F0.30: TC = 53.75 K ∆ = 8.16 meV ∆ 2 /k BTC = 3.52

38 Superconducting Gap

Theory: s-wave This work:  68.3 SmFeAsO 0.85 F0.15  53.3 ∆ 2∆ )0(  2 =  =  06.4 p-wave  62.3 SmFeAsO 0.82 F0.18 k T kBTc  B C  SmFeAsO F  28.4 d-wave  52.3 0.70 0.30

SmFeAsO 1-xFx

MgB 2

SmFeAsO 1-xFx

Rohlf, Modern Physics Fisher et al., Rev. Mod. Phys. 79, 000353 (2007) 39 Temperature-Dependence of Gap

every 0.8 K Double-peak (gap): decreasing splitting decreasing intensity

vanishes at T C = 42 K

Extra features (due to superconductivity)

vanishes at T C = 42 K

Asymmetrical background (due to normal state)

remains at T > T C

SmFeAsO 0.85 F0.15

T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, Nature 453 , 1224 (2008) 40 BCS-Like Temperature Dependence

BCS s-wave

At each T: Gap value from analyzing data using modified BTK theory

41 Gaps from Other Measurements ARPES

NdFeAsO 0.9 F0.1 (0807.0815.Kondo) Fully gapped, nearly isotropic s-wave symmetry

Nearly isotropic, fully gapped

Penetration Depth

PrFeAsO 1-y (0806.3149. Hashimoto) NdFeAsO 0.9 F0.1 (0807.0876.Martin) A single, fully gapped nearly isotropic gap A single, fully gapped nearly isotropic gap 42 Pseudogaps ?

Pseudogap in both non-SC and SC cuprates

No pseudogaps found in SC samples

Non-SC samples ?

43 Characteristics of Pseudogaps

 Pseudogap may induce conductance peaks .

 Pseudogap should be non -hysteretic .

 Pseudogap must be contact-independent .

44 Conductance Peaks in parent SmFeAsO

Conductance peaks “suggesting” pseudogaps

hysteretic

45 Temperature Dependence of Conductance Peaks

∆∆∆T ≈ 5 K

Vd

Structure disappears above 160 K

SmFeAsO with SDW at 160 K

Pseudogap for SDW ???

46 Systematic Contact-Dependent Conductance

0.14 Various contact resistance: ΩΩΩ ΩΩΩ R = 7.1 ΩΩΩ from 7 to 536

0.12 Various conductance peaks: 0.10 from 3 mV to 300 mV

0.08 dI/dV dI/dV 0.06 Strongly depend on 0.04 contact resistance

0.02

R = 536.4 ΩΩΩ NOT pseudogaps! 0.00 -1000 -500 0 500 1000 V (mV) 47 Pseudogaps?

 Pseudogap may induce conductance peaks But, conductance peaks do not imply pseudogaps since resistance anomaly also gives conductance peaks .  Pseudogap should be non-hysteretic. Spin density wave ( SDW ) results in hysteretic behavior in magnetic structure, crystalline structure, and resistance.  Pseudogap must be contact-independent Contact-dependent peaks are not pseudogaps

Not pseudogaps, what are they ?

48 Conductance Peaks due to Ballistic Heating !

SDW

SmFeAsO with SDW at 160 K

Point contact on SmFeAsO Temperature dependence of “Pseudogap”

SmFeAsO with SDW transition at 160 K

2 ∼∼∼ V (TSDW - T)

Ballistic heating effect

NOT pseudogaps, but SDW transition!

50 Summary ∆∆∆ Superconducting gap ( ) of SmFeAsO 1-xFx (x = 0.15, 0.18, 0.30) : ♦Gap value ∆ 2 /k BTC = 3.68, 3.62, 3.52 close to 3.53 (BCS s-wave) ♦ Gap structure ≈ Isotropic single gap ♦ Gap temperature dependence BCS-like ♦ No pseudogaps

Perhaps due to interband S± mechanism

T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, Nature 453 , 1224 (2008) 51 Acknowledgements

Prof. Chia-Ling Chien , Advisor, University Sunxiang Huang, JHU Dr. Mark Stiles , NIST Prof. Zlatko Tesanovic , Prof. Xianhui Chen , University of Science and Technology of China Prof. Yi Ji , University of Delaware

52 Fe Superconductors

 Large varieties of materials – 1111 : LaFeAsO, CeFeAsO, SmFeAsO, …

– 122 : BaFe 2As 2, CaFe 2As 2, … – 111 : LiFeAs, … – 11 : FeSe, FeTe, … – More to come…

 Highest Tc~55K achieved in SmFeAsO 1-xFx (“single layer”)  Metallic parent compound with common SDW feature  Fully gapped , nearly s-wave symmetry  FeAs plane can be doped with Co

Very different from Cuprates!

53 Saga of Superconductivity

Bronze age

Iron age

?

The saga of superconductivity continues… Stone age

54 Fermi Surface of Fe -SC

5 sheets: 2 sheets at MA 2 hole sheets at Γ 1 hole pocket at Z

55 Spin-Transfer Torque: Single Electron Scenario

θ θ ψ = cos |↑> +sin |↓> 2 2 FM torque ∼∼∼ sin θθθ θθθ e-

I

Slonczewski, JMMM 159 , L1 (1996) 56 Waintal et al ., PRB 62 , 12317 (2000) Switching via Spin-Transfer Torque

M < M M1 < M 2 1 2 fixed fixed

e - e -

favor parallel favor anti-parallel

low R high R I I

detect switching through GMR effect

57 Slonczewski, JMMM 159, L1 (1996); Waintal et al., PRB 62, 12317 (2000) Switching via Spin Transfer Torque (STT) Effect

∼∼∼ 7 2 jC 10 A/cm Nano-pillar, point contact

switching

GMR

T. Y. Chen, Y. Ji and C. L. Chien, Appl. Phys. Lett. 84 , 380 (2004). 58 STT in Magnetic Nanostructures

New form of STT effect Inverse of the domain wall MR

T. Y. Chen, Y. Ji, C. L. Chien and M. D. Stiles, Phys. Rev. Lett. 93 , 026601 (2004). 59 New Spin Structure Realized by STT

New spin structure, largest MR of over 400% T. Y. Chen, S. X. Huang, C. L. Chien and M. D. Stiles, Phys. Rev. Lett. 96 , 207203 (2006). 60 Cryogenic Dewar

 Temperature control: 1.5 K to 400 K  : 0 - 9 T  Rotating magnetic field without mechanical motion  Nitrogen jacket

 Sensitive transport system Two lock -in from Stanford research 10-channel switching box Current source, nano-voltmeter

Budget: 150K 61 Purposes

 Point contact spectroscopy  Transport study of nanostructure  Spin injection and detection studies

62 Sputtering System

Specific features: Tilt gun, co-sputtering Evaporator

63 Vibrating Sample Magnetometer

Thin film Study oxides for energy

64 Dependence of Contact Resistance

65 66 ZBA shape is different for different contacts

67 68 69 70 71 72 Various Contacts

Various contact, various peak values from 5 mV to 500 mV

A real pseudogap must be intrinsic independent of contact

73