From Rotating Atomic Rings to Quantum Hall States SUBJECT AREAS: M
From rotating atomic rings to quantum Hall states SUBJECT AREAS: M. Roncaglia1,2, M. Rizzi2 & J. Dalibard3 QUANTUM PHYSICS THEORETICAL PHYSICS 1Dipartimento di Fisica del Politecnico, corso Duca degli Abruzzi 24, I-10129, Torino, Italy, 2Max-Planck-Institut fu¨r Quantenoptik, ATOMIC AND MOLECULAR Hans-Kopfermann-Str. 1, D-85748, Garching, Germany, 3Laboratoire Kastler Brossel, CNRS, UPMC, E´cole normale supe´rieure, PHYSICS 24 rue Lhomond, 75005 Paris, France. APPLIED PHYSICS Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly Received correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments 15 March 2011 with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic Accepted path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped 4 July 2011 fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic Published gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial 22 July 2011 angular frequencies, the giant-vortex state is adiabatically connected to the bosonic n 5 1/2 Laughlin state. hile coherence between atoms finds its realization in Bose–Einstein condensates1–3, quantum Hall Correspondence and states4 are emblematic representatives of the strongly correlated regime. The fractional quantum Hall requests for materials effect (FQHE) has been discovered in the early 1980s by applying a transverse magnetic field to a two- W 5 should be addressed to dimensional (2D) electron gas confined in semiconductor heterojunctions .
[Show full text]