The Targeted Poverty Alleviation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacterial Communities in Habitats of Dongchuan, China: Their Role in Slate Weathering in Triggering and Fowing Areas of Debris Fow
Bacterial communities in habitats of Dongchuan, China: Their role in slate weathering in triggering and owing areas of debris ow Qi Wang ( [email protected] ) Nanjing University of Information Science and Technology https://orcid.org/0000-0003-3705-9922 Cheng Cheng Nanjing University of Information Science and Technology Evgenios Agathokleous Nanjing University of Information Science and Technology Shenggang Zang Nanjing Agricultural University Xiafang Sheng Nanjing Agricultural University Research Article Keywords: Debris ow, Slate, Bacterial communities, Biodiversity, Bioweathering, Available calcium Posted Date: April 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-417585/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Debris ow is one of the most severe disasters in China’s mountainous areas. Landslide soil materials are deposited on steep hill terrains or in channels and, once triggered by heavy rainfall, they can evolve into lethal debris ows. Some studies have suggested a prominent role of rock weathering in the formation of large landslides. In the present study, the a-diversity, composition, and weathering potential of bacterial communities inhabiting surfaces of slate rocks from the triggering area (altered less or more) and slate rocks from the owing area of debris ows were studied. We found that a-diversity indices were positively correlated with the organic matter content, and Firmicutes accounted for about 66% of the total bacterial community. The variation in bacterial community composition was majorly driven by available Ca. The highest relative abundances of genetic families associated with organic acid production, agellar assembly and carbonic anhydrase were found in surfaces of less-altered slate rocks from the triggering area by using PICRUSt. -
Supplemental Information
Supplemental information Table S1 Sample information for the 36 Bactrocera minax populations and 8 Bactrocera tsuneonis populations used in this study Species Collection site Code Latitude Longitude Accession number B. minax Shimen County, Changde SM 29.6536°N 111.0646°E MK121987 - City, Hunan Province MK122016 Hongjiang County, HJ 27.2104°N 109.7884°E MK122052 - Huaihua City, Hunan MK122111 Province 27.2208°N 109.7694°E MK122112 - MK122144 Jingzhou Miao and Dong JZ 26.6774°N 109.7341°E MK122145 - Autonomous County, MK122174 Huaihua City, Hunan Province Mayang Miao MY 27.8036°N 109.8247°E MK122175 - Autonomous County, MK122204 Huaihua City, Hunan Province Luodian county, Qiannan LD 25.3426°N 106.6638°E MK124218 - Buyi and Miao MK124245 Autonomous Prefecture, Guizhou Province Dongkou County, DK 27.0806°N 110.7209°E MK122205 - Shaoyang City, Hunan MK122234 Province Shaodong County, SD 27.2478°N 111.8964°E MK122235 - Shaoyang City, Hunan MK122264 Province 27.2056°N 111.8245°E MK122265 - MK122284 Xinning County, XN 26.4652°N 110.7256°E MK122022 - Shaoyang City,Hunan MK122051 Province 26.5387°N 110.7586°E MK122285 - MK122298 Baojing County, Xiangxi BJ 28.6154°N 109.4081°E MK122299 - Tujia and Miao MK122328 Autonomous Prefecture, Hunan Province 28.2802°N 109.4581°E MK122329 - MK122358 Guzhang County, GZ 28.6171°N 109.9508°E MK122359 - Xiangxi Tujia and Miao MK122388 Autonomous Prefecture, Hunan Province Luxi County, Xiangxi LX 28.2341°N 110.0571°E MK122389 - Tujia and Miao MK122407 Autonomous Prefecture, Hunan Province Yongshun County, YS 29.0023°N -
I Am Thinking of Having an Hiv Test
What do I do if I THINK my rights have been violated? VCT SITES IN KUNMING I am thInkIng Yunnan CDC: No. 158 Dongsi Street, Kunming. Tel: 3611773. kunming CDC: No. 126 Tuqiaoli, Xichang Road, Kunming. of havIng an Tel: 2270135 2242074. CDC of Wuhua District: No. 15 Xinzhuantan, Xichang Road. Tel: 4140767. hIv test. CDC of Panlong District: No. 117 Tuodong Road. Tel: 3111423. CDC of Xishan District: 14th Building, Xinlong Residential Quarter, Xianyuan Road, Xishan District. Tel: 8236355. CDC of guandu District: No. 365 Shuangqiao Road, What Your decision to know Guanshang, Guandu District. Tel: 7185209. do I need to your HIV status is CDC of Dongchuan District: Southern Section of Baiyun Road, very important. Dongchuan District. Tel: 2130178. It means that you If you believe your rights know about my CDC of Chengong County: No. 4 Fukang Road, Longcheng value your health have been violated … Township, Chenggong County Tel: 6201108. rights? and the health and CDC of Jinning County: Tianxin Village, Kunyang Township. well being of your Contact Tel: 7892264. sexual and drug injecting Yunnan University Legal aid Center CDC of anning City: No. 121 Lianran Township, Anning City. partners, as well as your 4th floor, 184 gulou Road Tel: 6802001. families. Before you undergo kunming, Yunnan, China CDC of fumin County: No. 24 Western Ring Road, Fumin voluntary counseling and testing (VCT) telephone: 0871-5182720 County. Tel: 8811204. email: [email protected] please read through this leaflet to learn CDC of Luquan County: No. 498 Wu Xing Road, Pinshan about your legal rights and responsibilities. -
Mining-Induced Geo-Hazards with Environmental Protection Measures in Yunnan, China: an Overview
Bull Eng Geol Environ DOI 10.1007/s10064-014-0608-6 ORIGINAL PAPER Mining-induced geo-hazards with environmental protection measures in Yunnan, China: an overview Yu-You Yang • Ye-Shuang Xu • Shui-Long Shen • Yao Yuan • Zhen-Yu Yin Received: 7 February 2014 / Accepted: 2 April 2014 Ó Springer-Verlag Berlin Heidelberg 2014 Abstract There are abundant mineral resources in Yun- such as monitoring, and engineering rehabilitation and nan Province, which is located in the southwestern part of recovery, need to be adopted. Monitoring measurement China, due to its unique geological conditions. The distri- combined with a digital mine information system can be bution of minerals is related to geological formations and used to forecast mine induced geo-hazards effectively. past tectonic movements. The mineral resources extracted Moreover, appropriate engineering rehabilitation technol- in Yunnan Province constitute 83 % of total mineral pro- ogy should be chosen according to the type of mining- duction in China. The local environment around the mines induced geo-hazards. in Yunnan Province has been destroyed due to harmful mining methods. Yunnan is a province with complicated Keywords Mineral resources Á Mining-induced geo- and serious mining-induced environmental problems. hazards Á Protection measures Á Yunnan Mining-induced geo-hazards found here include collapse, landslide, debris flow, sinkhole collapse, earth fissure, and water flowing into mine pits. To protect and control the Introduction geological environments in mining areas, countermeasures Geo-hazards are a type of disaster related to geological processes induced by natural or human activities. They & Y.-Y. Yang ( ) include mountain collapse, landslides (Xu et al. -
Yunnan Provincial Highway Bureau
IPP740 REV World Bank-financed Yunnan Highway Assets management Project Public Disclosure Authorized Ethnic Minority Development Plan of the Yunnan Highway Assets Management Project Public Disclosure Authorized Public Disclosure Authorized Yunnan Provincial Highway Bureau July 2014 Public Disclosure Authorized EMDP of the Yunnan Highway Assets management Project Summary of the EMDP A. Introduction 1. According to the Feasibility Study Report and RF, the Project involves neither land acquisition nor house demolition, and involves temporary land occupation only. This report aims to strengthen the development of ethnic minorities in the project area, and includes mitigation and benefit enhancing measures, and funding sources. The project area involves a number of ethnic minorities, including Yi, Hani and Lisu. B. Socioeconomic profile of ethnic minorities 2. Poverty and income: The Project involves 16 cities/prefectures in Yunnan Province. In 2013, there were 6.61 million poor population in Yunnan Province, which accounting for 17.54% of total population. In 2013, the per capita net income of rural residents in Yunnan Province was 6,141 yuan. 3. Gender Heads of households are usually men, reflecting the superior status of men. Both men and women do farm work, where men usually do more physically demanding farm work, such as fertilization, cultivation, pesticide application, watering, harvesting and transport, while women usually do housework or less physically demanding farm work, such as washing clothes, cooking, taking care of old people and children, feeding livestock, and field management. In Lijiang and Dali, Bai and Naxi women also do physically demanding labor, which is related to ethnic customs. Means of production are usually purchased by men, while daily necessities usually by women. -
For Personal Use Only Use Personal for a Loan That Mr Zhang Claimed Had Been Guaranteed by PRC DSX
5 May 2017 Elizabeth Harris Principal Advisor ASX Listing Compliance Level 40, Central Park 152-158 St Georges Terrace PERTH WA 6000 Dear Ms Harris ASX Query: Ding Sheng Xin Finance Co. Limited We refer to your letter dated 24 April 2017 in which you have sought a response from the Company in relation to questions raised by the ASX regarding judgements made involving the Company’s subsidiary (“PRC DSX”) in the People’s Republic of China. In response to ASX’s queries, the Company advises as follows: 1. It is a natural consequence of the nature of PRC DSX business, being guaranteeing the repayment of loans and other specific performances, that it will be involved in legal processes. Where lenders seek recovery of loans following any default of the performance of borrowers, and that borrower is a client of PRC DSX and their repayment obligations are guaranteed by PRC DSX, PRC DSX will be named in the relevant legal processes. Accordingly, PRC DSX has been and is likely to continue to be a party to legal processes and by extension to have judgements made against it in its capacity as guarantor. PRC DSX processes are such that if a client defaults and a judgement is made against that client, and by extension PRC DSX, PRC DSX then seeks to renegotiate the terms of the obligation on behalf of the client. If that process is successful the judgement is no longer relevant and is withdrawn, however if that process is not successful PRC DSX makes the payments on behalf of the client and proceeds to seek recovery from the client. -
How the Western Frontiers Were Won with the Help of Geophysics
1 The Challenge and Future of Rocky Desertification Control in Karst Areas 2 in Southwest China 3 4 Junyi Zhang1,2, Minghong Dai1 , Lachun Wang1*, Chunfen Zeng1*,Weici Su3 5 [1]{School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, 6 China} 7 [2]{School of Tourism and Land Resources, Chongqing Technology and Business University, 8 Chongqing, China} 9 [3] {The Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550018, 10 China} 11 Correspondence to: Lachun Wang ([email protected]); Chunfen Zeng (zengchunfen@nj 12 u.edu.cn) 13 Abstract 14 Karst rocky desertification occurs after vegetation deteriorates as a result of intensive land use, 15 which leads to severe water loss and soil erosion and exposes basement rocks, creating a 16 rocky landscape. The karst rocky desertification is found in humid areas in Southwest China, 17 the region most seriously affected by rocky desertification in the world. In order to promote 18 ecological restoration and help peasants out of poverty, the Chinese government carried out 19 the first phase of rocky desertification control project from 2006 to 2015, which initially 20 contained the expansion of rocky desertification. Currently, the Chinese government is 21 prepared to implement the second phase of the rocky desertification control project, and 22 therefore it is essential to summarize the lessons learned over the last ten years of the first 23 phase. In this paper, we analyze the driving social and economic factors behind rocky 24 desertification, summarize the scientific research on rocky desertification in the region, and 25 finally identify the main problems facing rocky desertification control. -
Characteristics and Management of Wildfire in the Interface of Kunming City, Southwest China
Characteristics and Management of Wildfire in the Interface of Kunming City, Southwest China Deng Guangkui1 He Xinyuan2 Wu Deyou2 Lishu3 Li Zengping3 1 Yunnan Forest Nature Center 2 Southwest Forestry College 3 Kunming Fire School, Forestry Bureau of Dongchuan District, Kumning Abstract Based on analysis of statistics on wildfire in the interface of Kunming from 1989 to 2001, the characteristics of wildfire are given as what follows: First, fire source control is difficult and non-production fire sources are as high as 70.4% because the population density in the area is very high. Second, the fire occurrence and development is closely related to the topography: 89.4% of the fire occurred on the slopes facing the sun; 10.6% on the slopes against the sun; 5.9% on steep slopes, 17.5% on slopes with moderate gradient; 76.6% on gentle slopes; in terms of fire starts, 40.1% is on foothills and 46.3% on hillsides and only 13.6% on the mountain tops. Third, concerning fire break time, about 90% of the fire happens from December to May and 71.3% between 11:00 and 15:00. Finally, wildfire is also related to tree species, forest age and stand features, as is the case with fire occurs in other forest stands. The current wildfire management strategy and approach includes two aspects, namely administrative and technical. The former are: the head of administration at different levels is fully responsible for fire management under his jurisdiction; fire offices and professional fire crews should be established and reasonably funded at county and township levels; organize and train farmers as volunteer fire crews to guarantee successful initial attack; strengthen the publicity and awareness on fire prevention and safe use of fire; enforce law and regulations strictly, and control the fire sources according to different fire conditions. -
Pollution Assessment of Trace Elements in Agricultural Soils Around Copper Mining Area
sustainability Article Pollution Assessment of Trace Elements in Agricultural Soils around Copper Mining Area Xianfeng Cheng 1, Jarmila Drozdova 2 , Tomas Danek 2,* , Qianrui Huang 1, Wufu Qi 1, Shuran Yang 1, Liling Zou 1, Yungang Xiang 1 and Xinliang Zhao 1 1 Yunnan Land and Resources Vocational College, Kunming 652501, China; [email protected] (X.C.); [email protected] (Q.H.); [email protected] (W.Q.); [email protected] (S.Y.); [email protected] (L.Z.); [email protected] (Y.X.); [email protected] (X.Z.) 2 ENET Centre, VSB—Technical University of Ostrava, 708 33 Ostrava-Poruba, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-597-307-109 Received: 31 October 2018; Accepted: 21 November 2018; Published: 1 December 2018 Abstract: Agricultural soils from Dongchuan copper mining area were sampled and analyzed to determine the concentrations of selected trace elements, namely As, Cd, Cr, Cu, Hg, Ni, Pb and Zn. The main objectives of this study were: (1) To determine the levels of trace elements and their spatial distribution in soils; (2) to evaluate the potential ecological risk; and (3) to identify the main sources of risk element pollution. The environmental risks were assessed using five different contamination and pollution indexes. Descriptive and exploratory statistical analyses were performed to identify the relations among the trace elements in soils and possible sources of pollution. Although the values of As, Cu and Zn in the soils were significantly higher than Yunnan background values and exceeded the limits of the Chinese national standards in several sampling points, the most serious threat for the ecosystem and human health was represented by Cd. -
Taxonomic Status of Populus Wulianensis and P. Ningshanica (Salicaceae)
A peer-reviewed open-access journal PhytoKeys 108: 117–129Taxonomic (2018) status of Populus wulianensis and P. ningshanica (Salicaceae) 117 doi: 10.3897/phytokeys.108.25600 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Taxonomic status of Populus wulianensis and P. ningshanica (Salicaceae) Lei Zhang1, Mingcheng Wang1, Tao Ma1, Jianquan Liu1 1 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P. R. China Corresponding author: Jianquan Liu ([email protected]) Academic editor: I. Belyaeva | Received 7 April 2018 | Accepted 26 July 2018 | Published 10 September 2018 Citation: Zhang L, Wang M, Ma T, Liu J (2018) Taxonomic status of Populus wulianensis and P. ningshanica (Salicaceae). PhytoKeys 108: 117–129. https://doi.org/10.3897/phytokeys.108.25600 Abstract Species delimitation in the genus Populus is particularly challenging due to high levels of intraspecific polymorphism as well as frequent interspecific hybridisation and introgression. In this study, we aimed to examine the taxonomic status of Populus ningshanica and P. wulianensis using an integrative taxonomy that considers multiple operational criteria. We carried out morphometric analyses of leaf traits and genetic examinations (including sequence variations at five barcoding DNAs and polymorphisms at 14 nuclear microsatellite SSR primers) at the population level between them and two closely related species P. adenopoda and P. davidiana. Results suggest that P. wulianensis belongs to the polymorphic species, P. adenopoda and should be considered as a synonym of the latter. P. ningshanica may have arisen as a result on the hybridisation between P. -
Resource-Based City Type and Reforming Strategy Discussion and Research
2016 4th International Conference on Advances in Social Science, Humanities, and Management (ASSHM 2016) ISBN: 978-1-60595-412-7 Resource-based City Type and Reforming Strategy Discussion and Research Junwei Xing1 Abstract The resource-based city can divides according to the Israeli resource type and development phase two big standards. The resource-based city economic transformation strategy first should from the macroscopic level, seek for the regional economic development the new superiority, next should act according to the new regional development favorable condition that establishes the pattern of industrial transformation from the microscopic level. Keywords. Resource-based City; Type; Reforming Strategy. 1. INTRODUCTION The resource-based city is our country important foundation energy and raw material supplying place, development display excessively significant role to our country national economy. But as a result of the non-renewability of finiteness and resources of resource, the resource-based city sooner or later must face the issue of economic transformation, otherwise possibly enters the winter. At present, a considerable number of resource-based cities in China have been facing a series of economic and social problems such as resource depletion, economic recession, environmental degradation, unemployment and the increase of the poor population. These resource-based cities have become the problem areas in which regional contradictions are concentrated. Therefore, how to guide these cities to successfully transform and achieve sustainable development has become an important topic of concern for both academia and government. 2. Classification of Resource-based Cities Resource based cities are mainly built up by the development of resources. Although the overall pattern of urban growth and development is similar, because of the differences of the economic development factors such as natural resources, geographical conditions and other economic development factors, the difference between different resource cities is very large. -
Minimum Wage Standards in China August 11, 2020
Minimum Wage Standards in China August 11, 2020 Contents Heilongjiang ................................................................................................................................................. 3 Jilin ............................................................................................................................................................... 3 Liaoning ........................................................................................................................................................ 4 Inner Mongolia Autonomous Region ........................................................................................................... 7 Beijing......................................................................................................................................................... 10 Hebei ........................................................................................................................................................... 11 Henan .......................................................................................................................................................... 13 Shandong .................................................................................................................................................... 14 Shanxi ......................................................................................................................................................... 16 Shaanxi ......................................................................................................................................................