Criptografía

Total Page:16

File Type:pdf, Size:1020Kb

Criptografía Criptología y Seguridad Jorge Dávila Muro Primera edición: Diciembre 2008 No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, mecánico o por fotocopias. Edita: Fundación Rogelio Segovia para el Desarrollo de las Telecomunicaciones Ciudad Universitaria, s/n 28040-Madrid Imprime: E.T.S.I. de Telecomunicación Universidad Politécnica de Madrid Ciudad Universitaria, s/n 28040-Madrid Diseño de cubierta y maquetación: Rocio Ortega ISBN (13): 978-84-7402-352-7 ISBN (10): 84-7402-352-1 Depósito Legal: M-42946-2008 Índice Presentación 3 Prefacio 7 ¿Qué es la criptografía? 7 La cifra 8 Etapas de la criptografía 9 El principio de la criptografía clásica 10 La ocultación en los textos sagrados 12 Los primeros usos militares 13 La criptografía en la diplomacia y el buen gobierno 16 Los imperios de Oriente 17 Criptografía medieval y renacentista 19 El Barroco y los maestros de espías 26 La era moderna 30 El telégrafo y la popularidad del cifrado 35 El nacimiento del criptoanálisis moderno 38 El siglo XX y las máquinas de cifrado 42 El cifrado perfecto 46 Telegramas cifrados e intercepciones inconfesables 47 La máquina Enigma 51 La guerra en el Pacífico 52 Máquinas para el criptoanálisis 56 La guerra fría y el proyecto Venona 59 La teoría de la información y de los sistemas secretos 68 La guerra de Corea 70 Diecisiete años de espionaje para el Kremlin 72 La guerra de Vietnam 75 En las costas del Sinaí 78 Capturando la máquina 79 ARPANET y la semilla del nuevo escenario 80 El DES y la criptografía civil 81 El nuevo siglo y el Advanced Encryption Standard 86 La era digital y primeros límites para la criptografía civil 88 La Web 89 El PGP 90 El PGP de código abierto 92 Retos y resistencia del algoritmo RSA 93 El SSL y las comunicaciones Web cifradas 95 Primeros ciber-delitos 96 El nacimiento de las funciones hash 97 La quimera de la protección de contenidos multimedia 98 La criptografía de clave pública 100 El RSA y otros algoritmos asimétricos 104 Limitaciones a la criptografía civil 107 El algoritmo RC4 y las conexiones Wi-Fi 109 Evaluaciones criptográficas internacionales 112 Ascenso y caída de las funciones hash 114 Criptografías cuánticas 116 El declive de la función SHA-1 120 El criptoanálisis moderno y la inseguridad GSM 123 El análisis de tráfico 124 Algunos sistemas nacen muertos 126 La longitud de las claves y su evolución con los niveles de 127 seguridad ¿Qué problemas quedan por resolver en la criptrografía actual? 128 Epílogo 132 ANEXO 133 La criptografía y la seguridad en el 7º Programa Marco europeo y 135 en el Plan Nacional Español Organismos y departamentos de la Administración Pública con 143 competencia en temas criptográficos Presentación En la Sociedad de la Información en la que vivimos, la mayor parte de la información que es gestionada se transmite, se procesa o se almacena en algún momento en un sistema de información y comunicaciones. Sin embargo, la enorme y creciente complejidad tecnológica de los sistemas de información y comunicaciones dificulta la comprensión de los conceptos de seguridad y protección de la información. Se da la paradoja de que cada vez hay más personas que conocen y usan las tecnologías de la infor- mación y, sin embargo, cada vez hay menos que tengan un conocimiento profundo de las mismas. Por ello, damos la bienvenida a este trabajo del profesor Jorge Dávila, por su loable intento de dar a conocer y divulgar conceptos complejos como los relativos a la criptología y a la seguridad. Podemos definir la Seguridad de las Tecnologías de la Información (TIC) como la capacidad de los sistemas que utilizan dichas tecnologías (sistemas que denominamos de información y comunicaciones) para resistir, hasta un determinado nivel de confianza, accidentes o acciones maliciosas que pueden comprometer la confidencialidad, integridad, autenticidad y dispo- nibilidad de la información que manejan. También, y no menos importante, el concepto de seguridad de las tecnologías de la información abarca la capacidad de protección de la integridad y disponibilidad de los propios sistemas de información y comunicaciones. Los productos de seguridad son aquellos que forman parte de los sistemas de información y comunicaciones y que proporcionan al sistema la capa- cidad de protección de la información. Su función es singularmente impor- tante porque, en definitiva, los productos de seguridad de las TIC son los que hacen posible que un sistema, inseguro, pueda ser usado de forma segura manteniendo todas sus funciones esenciales. Dentro de los productos de seguridad tienen un papel muy destacado los productos criptológicos, papel que viene dado por las singulares caracte- rísticas que tiene la Criptología. La Criptología, tal como a lo largo de este libro se pone de manifiesto, es capaz de proporcionar soluciones para mantener la confidencialidad y la integridad de la información, para pro- porcionar autenticación, evitar el no-repudio y registrar las acciones ejecutadas sobre un sistema. Los productos criptológicos no son más que implementaciones específicas, adaptadas a diversos entornos y servicios, de las funciones que proporciona la Criptología y por ello, hoy en día, no se concibe un sistema de información que no incorpore funciones y meca- nismos de seguridad fundamentados en un algoritmo criptológico. 3 El autor de la monografía, el profesor Jorge Dávila, es un especialista muy conocido en el mundo de la seguridad de las tecnologías de la información y las comunicaciones, con el que el personal del Centro Criptológico Nacional contrasta habitualmente opiniones y pareceres sobre cuestiones técnicas. Experto conocedor de los secretos que esconde la ciencia cripto- lógica, es autor habitual y prolífico de artículos y comentarios en importan- tes revistas del sector de la seguridad. El profesor Dávila ha hecho un excepcional trabajo de divulgación científica en la presente monografía. En algo más de cien páginas, revisa toda la evo- lución histórica de la ciencia criptológica, sin perder detalle de las diferen- tes fases por las que ha pasado y apuntando cuáles serán las líneas futu- ras de su desarrollo. Por ello, estamos seguros de que el presente trabajo satisfará las expectativas tanto de los lectores menos versados en la mate- ria, que buscan una conocimiento genérico en su primera aproximación al mundo de la criptografía, como a los más experimentados, que dispondrán de una perspectiva histórica detallada, lo que les permitirá responder a muchos de los interrogantes actuales del mundo de la seguridad de las tec- nologías de la información y las comunicaciones, en general, y del desarrollo criptológico, en particular. Finalmente, sólo nos queda agradecer y felicitar tanto a Isdefe como a la Universidad Politécnica de Madrid por esta iniciativa, conscientes como somos de que la divulgación de la cultura de la seguridad es un camino arduo y difícil, en el que el Centro Criptológico Nacional no puede ni quiere caminar solo, sino colaborando con empresas e instituciones como las ya citadas, para hacer posible que los beneficios de la Sociedad de la Información lleguen a todos. D. Alberto Saiz Cortés Secretario de Estado-Director CENTRO NACIONAL DE INTELIGENCIA CENTRO CRIPTOLÓGICO NACIONAL 4 Criptología y Seguridad "Es dudoso que el género humano logre crear un enigma que el mismo ingenio humano no sea capaz de resolver" Edgar Allan Poe Prefacio Códigos, cifras, señales y lenguas secretas han estado ocultando el contenido y significado de algunas comunicaciones durante siglos, inde- pendientemente de si su transmisión se ha hecho por medios orales o escritos, mediante gestos o por canales electrónicos. Aunque el origen de esta actividad no está claro, quizás por su mismo amor al secreto y a la confidencialidad, lo que si está claro es que su existencia, sus métodos y sus propósitos no siempre han permanecido ocultos. De hecho, en nuestros días, la preocupación de la sociedad global por los temas de la confiden- cialidad y de la protección de la información ha desenterrado viejos fantasmas y mitos. La seguridad en general, y la de la información en particular, ha venido a extender y popularizar métodos criptológicos que en otros tiempos solo eran propios de iglesias, monarcas, príncipes, diplo- máticos, subversivos y militares, por no mencionarlos a todos. ¿Qué es la criptografía? La criptografía es el arte de escribir algo que no puede entender nadie, a menos que se tenga la correspondiente clave. La palabra criptografía proviene del griego κρυπτος (kryptos = oculto), de γραϕειν (grafein = escribir) y del sufijo -ia que es el utilizado para crear sustantivos abstractos. Así pues, la criptografía es algo que se refiere a la escritura y su cualidad de per- manecer oculta1. Una definición menos lingüística del término criptografía se refiere al arte o ciencia de cifrar y descifrar la información utilizando técnicas complejas que hagan posible el intercambio seguro de mensajes transformados que sólo pueden ser leídos por aquellas personas a quienes van dirigidos. Para hablar con un poco más de precisión, cuando esta área de conocimiento es tratada como una ciencia, entonces deberíamos hablar de la criptología, ya que ésta engloba tanto las técnicas de cifrado, la criptografía propia- mente dicha, como sus técnicas complementarias: el criptoanálisis. Esta 1De esa misma raíz griega que indica algo "oculto, secreto, engañoso", es de donde derivó también la palabra gruta y, a partir de ésta, grotesco. Más tarde surgiría cripta como cultis- mo del término gruta. 7 Jorge Dávila Muro última actividad siempre ha estado íntima y antagónicamente relacionada con aquella, ya que estudia los métodos que se utilizan para "romper" la seguridad de los textos que hayan sido cifrados con el objetivo de recu- perar la información original que contienen, y hacer esto en ausencia de la clave oportuna.
Recommended publications
  • Vigenère Cipher Cryptanalysis
    Spring 2015 Chris Christensen MAT/CSC 483 Cryptanalysis of the Vigenère Cipher: Kasiski Test The keyword of a Vigenère cipher describes the rotation among the Caesar cipher alphabets that are used. That rotation leads to patterns that can be exploited by a cryptanalyst. If we know the length of the keyword, we can often determine the keyword and, hence, decrypt all messages encrypted with that keyword. Here is a ciphertext message that has been encrypted with a Vigenère cipher. nifon aicum niswt luvet vxshk nissx wsstb husle chsnv ytsro cdsoy nisgx lnona chvch gnonw yndlh sfrnh npblr yowgf unoca cossu ouoll iuvef issoe xgosa cpbew uormh lftaf cmwak bbbdv cqvek muvil qbgnh ntiri ljgig atwnv yuvev iorim cpbsb hxviv buvet vxshk uorim mjbdb pjrut fbueg ntgof yuwmx miodm ipdek uuswx lfjek sewfy yssnm zscmm bpgeb huvez ysaag usaew mffvb wfgim qpilw bbjeu yfbef vbfrt mtwnz uorig wpbvx hjsnm zpfag uhsnm npglb jbqrh mttrh huwek mpfak ljjen hbbnh ooqew vzdak udvum yucbx yoquf vffew vzonx hjumt lfgef vmwnz uxsiz bumag xbbtb kvotx xumpx qswtx l Assume that, somehow, we have discovered that the keyword has length five (which is conveniently the same as the size of the blocks). Then the first letter of each block is encrypted with the same row of the Vigenère square – they are encrypted with the same Caesar cipher. Similarly, the second letter of each block is encrypted with the same row – the same Caesar cipher. The third letters with the same Caesar cipher. The fourth letters with the same Caesar cipher. And, the fifth letters with the same Caesar cipher.
    [Show full text]
  • A Secure Authentication System- Using Enhanced One Time Pad Technique
    IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 11 A Secure Authentication System- Using Enhanced One Time Pad Technique Raman Kumar1, Roma Jindal 2, Abhinav Gupta3, Sagar Bhalla4 and Harshit Arora 5 1,2,3,4,5 Department of Computer Science and Engineering, 1,2,3,4,5 D A V Institute of Engineering and Technology, Jalandhar, Punjab, India. Summary the various weaknesses associated with a password have With the upcoming technologies available for hacking, there is a come to surface. It is always possible for people other than need to provide users with a secure environment that protect their the authenticated user to posses its knowledge at the same resources against unauthorized access by enforcing control time. Password thefts can and do happen on a regular basis, mechanisms. To counteract the increasing threat, enhanced one so there is a need to protect them. Rather than using some time pad technique has been introduced. It generally random set of alphabets and special characters as the encapsulates the enhanced one time pad based protocol and provides client a completely unique and secured authentication passwords we need something new and something tool to work on. This paper however proposes a hypothesis unconventional to ensure safety. At the same time we need regarding the use of enhanced one time pad based protocol and is to make sure that it is easy to be remembered by you as a comprehensive study on the subject of using enhanced one time well as difficult enough to be hacked by someone else.
    [Show full text]
  • Cryptography in Modern World
    Cryptography in Modern World Julius O. Olwenyi, Aby Tino Thomas, Ayad Barsoum* St. Mary’s University, San Antonio, TX (USA) Emails: [email protected], [email protected], [email protected] Abstract — Cryptography and Encryption have been where a letter in plaintext is simply shifted 3 places down used for secure communication. In the modern world, the alphabet [4,5]. cryptography is a very important tool for protecting information in computer systems. With the invention ABCDEFGHIJKLMNOPQRSTUVWXYZ of the World Wide Web or Internet, computer systems are highly interconnected and accessible from DEFGHIJKLMNOPQRSTUVWXYZABC any part of the world. As more systems get interconnected, more threat actors try to gain access The ciphertext of the plaintext “CRYPTOGRAPHY” will to critical information stored on the network. It is the be “FUBSWRJUASLB” in a Caesar cipher. responsibility of data owners or organizations to keep More recent derivative of Caesar cipher is Rot13 this data securely and encryption is the main tool used which shifts 13 places down the alphabet instead of 3. to secure information. In this paper, we will focus on Rot13 was not all about data protection but it was used on different techniques and its modern application of online forums where members could share inappropriate cryptography. language or nasty jokes without necessarily being Keywords: Cryptography, Encryption, Decryption, Data offensive as it will take those interested in those “jokes’ security, Hybrid Encryption to shift characters 13 spaces to read the message and if not interested you do not need to go through the hassle of converting the cipher. I. INTRODUCTION In the 16th century, the French cryptographer Back in the days, cryptography was not all about Blaise de Vigenere [4,5], developed the first hiding messages or secret communication, but in ancient polyalphabetic substitution basically based on Caesar Egypt, where it began; it was carved into the walls of cipher, but more difficult to crack the cipher text.
    [Show full text]
  • A Practical Implementation of a One-Time Pad Cryptosystem
    Jeff Connelly CPE 456 June 11, 2008 A Practical Implementation of a One-time Pad Cryptosystem 0.1 Abstract How to securely transmit messages between two people has been a problem for centuries. The first ciphers of antiquity used laughably short keys and insecure algorithms easily broken with today’s computational power. This pattern has repeated throughout history, until the invention of the one-time pad in 1917, the world’s first provably unbreakable cryptosystem. However, the public generally does not use the one-time pad for encrypting their communication, despite the assurance of confidentiality, because of practical reasons. This paper presents an implementation of a practical one-time pad cryptosystem for use between two trusted individuals, that have met previously but wish to securely communicate over email after their departure. The system includes the generation of a one-time pad using a custom-built hardware TRNG as well as software to easily send and receive encrypted messages over email. This implementation combines guaranteed confidentiality with practicality. All of the work discussed here is available at http://imotp.sourceforge.net/. 1 Contents 0.1 Abstract.......................................... 1 1 Introduction 3 2 Implementation 3 2.1 RelatedWork....................................... 3 2.2 Description ........................................ 3 3 Generating Randomness 4 3.1 Inadequacy of Pseudo-random Number Generation . 4 3.2 TrulyRandomData .................................... 5 4 Software 6 4.1 Acquiring Audio . 6 4.1.1 Interference..................................... 6 4.2 MeasuringEntropy................................... 6 4.3 EntropyExtraction................................ ..... 7 4.3.1 De-skewing ..................................... 7 4.3.2 Mixing........................................ 7 5 Exchanging Pads 8 5.1 Merkle Channels . 8 5.2 Local Pad Security .
    [Show full text]
  • US Counterintelligence and Security Concerns Feb 1987.P65
    Union Calendar No. 3 100TH CONGRESS HOUSE OF REPRESENTATIVES REPORT 1st Session 100-5 UNITED STATES COUNTERINTELLIGENCE AND SECURITY CONCERNS1986 REPORT BY THE PERMANENT SELECT COMMITTEE ON INTELLIGENCE HOUSE OF REPRESENTATIVES FEBRUARY 4, 1987.Committed to the Committee of the Whole House on the State of the Union and ordered to be printed U.S. GOVERNMENT PRINTING OFFICE 68-440 WASHINGTON : 1987 Union Calendar No. 3 100TH CONGRESS REPORT 1st Session HOUSE OF REPRESENTATIVES 100-5 UNITED STATES COUNTERINTELLIGENCE AND SECURITY CONCERNS-1986 FEBRUARY 4, 1987-Committed to the Committee of the Whole House on the State of the Union and ordered to be printed Mr. STOKES, from the Permanent Select Committee on Intelligence, submitted the following REPORT EXECUTIVE SUMMARY Over the past several years, a dangerous upward trend in successful espionage operations against the United States has occurred. Present and former U.S. Gov- ernment employees with access to sensitive classified information have played the key roles in each operation. Damage to U.S. national security has been signifi- cant and is still being estimated. Deeply concerned over these developments, the House Permanent Select Com- mittee on Intelligence has spent a great deal of time investigating this alarming situation. This report represents one outcome of the investigation. From its early days, the Administration has focused considerable attention and effort on improving the effectiveness of U.S. counterintelligence. Concomitantly, the House and Senate Intelligence Committees have authorized significantly in- creased funding for counterintelligence and urged that counterintelligence con- cerns assume a higher priority within the Intelligence Community. These efforts have elevated the morale, status and numbers of counterintelligence personnel, helped cope with security investigation backlogs and encouraged new initiatives in some operational and policy areas.
    [Show full text]
  • Reversal Theory: Understanding the Motivational Styles of Espionage Lydia R
    Reversal Theory: Understanding the Motivational Styles of Espionage Lydia R. Wilson Is espionage a question of preference? Are there definite psychologi­ cal needs that compel individuals to seek satisfaction through spying against the interests of their own country? To address these ques­ tions, I apply Dr. Michael J. Apter's Reversal Theory (RT) to the espionage or insider threat problem to further our understanding of what may be done-pro actively-to counter what the former u.s. National Counterintelligence Executive calls "the top counterintel­ ligence challenge to our community."! About the varied application of his theory, Apter writes: New patterns become evident wherever we look, whether our interest is in family relations, violence, humor, risk-taking, leadership, sport, or almost any other topic. As a result, reversal theory is a theory of unusual generality that can act to integrate seemingly unrelated topics into a single overarching and comprehensive framework.2 The application of this versatile theory-that psychologists have applied to topics ranging from smoking cessation to enhancing ath­ letic performance-may have value for security professionals and the U.S. counterintelligence community. This is because RT may answer questions such as: • What are the basic motives of human beings? • Is there a pattern underlying different types of mental disorder? • Why is it that sometimes people voluntarily do unnecessary things that might harm them? • Why do people sometimes enjoy doing things that are forbid­ den?3 76 International Journal of Intelligence Ethics, Vol. 3, No. 1 I Spring/Summer 2012 Lydia R. Wilson 77 Goal of this Article The goal of this article is to present a better understanding of the psychology of those who have engaged in espionage-not to di­ agnose or establish a profile of those who might become a spy.
    [Show full text]
  • Elementary Cryptanalysis Classification of Cryptanalytic Attacks
    12 Elementary Cryptography Elementary Cryptanalysis The most direct attack on a cryptosystem is an exhaustive key search attack. The key size therefore provides a lower bound on the security of a cryptosystem. As an example we compare the key sizes of several of the cryptosystems we have introduced so far. We assume that the alphabet for each is the 26 character alphabet. Substitution ciphers: Simple substitution ciphers: 26! Affine substitution ciphers: ϕ(26) · 26 = 12 · 26 = 312 Translation substitution ciphers: 26 Transposition ciphers: Transposition ciphers (of block length m): m! Enigma : Rotor choices (3 of 5): 60 Rotor positions: 263 = 17576 Plugboard settings: 105578918576 Total combinations: 111339304373506560 The size of the keyspace is a naive measure, but provides an upper bound on the security of a cryptosystem. This measure ignores any structure, like character frequencies, which might remain intact following encryption. Classification of Cryptanalytic Attacks We do not consider enumeration of all keys a valid cryptanalytic attack, since no well- designed cryptosystem is susceptible to such an approach. The types of legitimate attacks which we consider can be classified in three categories. 1. Ciphertext-only Attack. 2. Known Plaintext Attack. 3. Chosen Plainext Attack. Ciphertext-only Attack. The cryptanalyst intercepts one or more messages all encoded with the same encryption algorithm. Goal: Recover the original plaintext or plaintexts, to discover the deciphering key or find an algorithm for deciphering subsequent messages enciphered with the same key. Known Plaintext Attack. The cryptanalyst has access to not only the ciphertext, but also the plaintext for one or more of the messages. Goal: Recover the deciphering key or find an algorithm for deciphering subsequent mes- sages (or the remaining plaintext) enciphered which use the same key.
    [Show full text]
  • Historical Ciphers • A
    ECE 646 - Lecture 6 Required Reading • W. Stallings, Cryptography and Network Security, Chapter 2, Classical Encryption Techniques Historical Ciphers • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development Why (not) to study historical ciphers? Secret Writing AGAINST FOR Steganography Cryptography (hidden messages) (encrypted messages) Not similar to Basic components became modern ciphers a part of modern ciphers Under special circumstances modern ciphers can be Substitution Transposition Long abandoned Ciphers reduced to historical ciphers Transformations (change the order Influence on world events of letters) Codes Substitution The only ciphers you Ciphers can break! (replace words) (replace letters) Selected world events affected by cryptology Mary, Queen of Scots 1586 - trial of Mary Queen of Scots - substitution cipher • Scottish Queen, a cousin of Elisabeth I of England • Forced to flee Scotland by uprising against 1917 - Zimmermann telegram, America enters World War I her and her husband • Treated as a candidate to the throne of England by many British Catholics unhappy about 1939-1945 Battle of England, Battle of Atlantic, D-day - a reign of Elisabeth I, a Protestant ENIGMA machine cipher • Imprisoned by Elisabeth for 19 years • Involved in several plots to assassinate Elisabeth 1944 – world’s first computer, Colossus - • Put on trial for treason by a court of about German Lorenz machine cipher 40 noblemen, including Catholics, after being implicated in the Babington Plot by her own 1950s – operation Venona – breaking ciphers of soviet spies letters sent from prison to her co-conspirators stealing secrets of the U.S. atomic bomb in the encrypted form – one-time pad 1 Mary, Queen of Scots – cont.
    [Show full text]
  • Historical Dictionary of Russian and Soviet Intelligence
    Russia • Military / Security Historical Dictionaries of Intelligence and Counterintelligence, No. 5 PRINGLE At its peak, the KGB (Komitet Gosudarstvennoy Bezopasnosti) was the largest HISTORICAL secret police and espionage organization in the world. It became so influential DICTIONARY OF in Soviet politics that several of its directors moved on to become premiers of the Soviet Union. In fact, Russian president Vladimir V. Putin is a former head of the KGB. The GRU (Glavnoe Razvedvitelnoe Upravleniye) is the principal intelligence unit of the Russian armed forces, having been established in 1920 by Leon Trotsky during the Russian civil war. It was the first subordinate to the KGB, and although the KGB broke up with the dissolution of the Soviet Union in 1991, the GRU remains intact, cohesive, highly efficient, and with far greater resources than its civilian counterparts. & The KGB and GRU are just two of the many Russian and Soviet intelli- gence agencies covered in Historical Dictionary of Russian and Soviet Intelligence. Through a list of acronyms and abbreviations, a chronology, an introductory HISTORICAL DICTIONARY OF essay, a bibliography, and hundreds of cross-referenced dictionary entries, a clear picture of this subject is presented. Entries also cover Russian and Soviet leaders, leading intelligence and security officers, the Lenin and Stalin purges, the gulag, and noted espionage cases. INTELLIGENCE Robert W. Pringle is a former foreign service officer and intelligence analyst RUSSIAN with a lifelong interest in Russian security. He has served as a diplomat and intelligence professional in Africa, the former Soviet Union, and Eastern Europe. For orders and information please contact the publisher && SOVIET Scarecrow Press, Inc.
    [Show full text]
  • Espionage Against the United States by American Citizens 1947-2001
    Technical Report 02-5 July 2002 Espionage Against the United States by American Citizens 1947-2001 Katherine L. Herbig Martin F. Wiskoff TRW Systems Released by James A. Riedel Director Defense Personnel Security Research Center 99 Pacific Street, Building 455-E Monterey, CA 93940-2497 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704- 0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DDMMYYYY) 2. REPORT TYPE 3. DATES COVERED (From – To) July 2002 Technical 1947 - 2001 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER Espionage Against the United States by American Citizens 1947-2001 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Katherine L. Herbig, Ph.D. Martin F. Wiskoff, Ph.D. 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
    [Show full text]
  • A Hybrid Cryptosystem Based on Vigenère Cipher and Columnar Transposition Cipher
    International Journal of Advanced Technology & Engineering Research (IJATER) www.ijater.com A HYBRID CRYPTOSYSTEM BASED ON VIGENÈRE CIPHER AND COLUMNAR TRANSPOSITION CIPHER Quist-Aphetsi Kester, MIEEE, Lecturer Faculty of Informatics, Ghana Technology University College, PMB 100 Accra North, Ghana Phone Contact +233 209822141 Email: [email protected] / [email protected] graphy that use the same cryptographic keys for both en- Abstract cryption of plaintext and decryption of cipher text. The keys may be identical or there may be a simple transformation to Privacy is one of the key issues addressed by information go between the two keys. The keys, in practice, represent a Security. Through cryptographic encryption methods, one shared secret between two or more parties that can be used can prevent a third party from understanding transmitted raw to maintain a private information link [5]. This requirement data over unsecured channel during signal transmission. The that both parties have access to the secret key is one of the cryptographic methods for enhancing the security of digital main drawbacks of symmetric key encryption, in compari- contents have gained high significance in the current era. son to public-key encryption. Typical examples symmetric Breach of security and misuse of confidential information algorithms are Advanced Encryption Standard (AES), Blow- that has been intercepted by unauthorized parties are key fish, Tripple Data Encryption Standard (3DES) and Serpent problems that information security tries to solve. [6]. This paper sets out to contribute to the general body of Asymmetric or Public key encryption on the other hand is an knowledge in the area of classical cryptography by develop- encryption method where a message encrypted with a reci- ing a new hybrid way of encryption of plaintext.
    [Show full text]
  • The First Americans the 1941 US Codebreaking Mission to Bletchley Park
    United States Cryptologic History The First Americans The 1941 US Codebreaking Mission to Bletchley Park Special series | Volume 12 | 2016 Center for Cryptologic History David J. Sherman is Associate Director for Policy and Records at the National Security Agency. A graduate of Duke University, he holds a doctorate in Slavic Studies from Cornell University, where he taught for three years. He also is a graduate of the CAPSTONE General/Flag Officer Course at the National Defense University, the Intelligence Community Senior Leadership Program, and the Alexander S. Pushkin Institute of the Russian Language in Moscow. He has served as Associate Dean for Academic Programs at the National War College and while there taught courses on strategy, inter- national relations, and intelligence. Among his other government assignments include ones as NSA’s representative to the Office of the Secretary of Defense, as Director for Intelligence Programs at the National Security Council, and on the staff of the National Economic Council. This publication presents a historical perspective for informational and educational purposes, is the result of independent research, and does not necessarily reflect a position of NSA/CSS or any other US government entity. This publication is distributed free by the National Security Agency. If you would like additional copies, please email [email protected] or write to: Center for Cryptologic History National Security Agency 9800 Savage Road, Suite 6886 Fort George G. Meade, MD 20755 Cover: (Top) Navy Department building, with Washington Monument in center distance, 1918 or 1919; (bottom) Bletchley Park mansion, headquarters of UK codebreaking, 1939 UNITED STATES CRYPTOLOGIC HISTORY The First Americans The 1941 US Codebreaking Mission to Bletchley Park David Sherman National Security Agency Center for Cryptologic History 2016 Second Printing Contents Foreword ................................................................................
    [Show full text]