Introduction to Astrophysical Spectra Solar spectropolarimetry: From virtual to real observations 2019 Jorrit Leenaarts (
[email protected]) Jaime de la Cruz Rodr´ıguez(
[email protected]) 1 Contents Preface 4 1 Introduction 5 2 Solid angle 6 3 Radiation, intensity and flux 7 3.1 Basic properties of radiation . 7 3.2 Definition of intensity . 7 3.3 Additional radiation quantities . 9 3.4 Flux from a uniformly bright sphere . 11 4 Radiative transfer 12 4.1 Definitions . 12 4.2 The radiative transfer equation . 14 4.3 Formal solution of the transport equation . 16 4.4 Radiation from a homogeneous medium . 17 4.5 Radiation from an optically thick medium . 19 5 Radiation in thermodynamic equilibrium 22 5.1 Black-body radiation . 22 5.2 Transfer equation and source function in thermodynamic equi- librium . 24 6 Matter in thermodynamic equilibrium 25 7 Matter/radiation interaction 26 7.1 Bound-bound transitions . 27 7.2 Einstein relations . 29 7.3 Emissivity and extinction coefficient . 31 7.4 Source function . 33 8 Line broadening 33 8.1 Broadening processes . 34 8.2 Combining broadening mechanisms . 36 8.3 Line widths as a diagnostic . 40 2 9 Bound-free transitions 40 10 Other radiative processes 43 10.1 Elastic scattering . 45 10.2 The H− ion ............................ 46 11 Rate equations 46 11.1 General theory . 46 11.2 The two-level atom . 47 11.3 A three-level atom as a density diagnostic . 49 11.4 A three-level atom as a temperature diagnostic . 52 12 Exercises 53 3 Preface These are a fraction of the lecture notes for the Solarnet Summer School - Solar spectropolarimetry: From virtual to real observations.