Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2020 Eco-friendly betanin hybrid materials based on palygorskite and halloysite Shue Li a,b,c, Bin Mu a,c*, Xiaowen Wang a,c, Yuru Kang a,c, Aiqin Wanga,c* a Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China c Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, P. R. China ABSTRAC Eco-friendly betanin/clay minerals hybrid materials with good stability were synthesized combining natural betanin molecules extracted from beetroot with 2:1 type palygorskite (Pal) and 1:1 type halloysite (Hal), respectively. It was found that the adsorption, grinding and heating treatment played a key role to enhance the interaction between betanin and clay minerals during preparation process, which favored improving the thermal stability and solvent resistance of natural betanin. The L* and a* values of the betanin/Pal and betanin/Hal hybrid materials were 64.94 and 14.96, 62.55 and 15.48, respectively, indicating that betanin/Hal exhibited the better color performance. The structural characterizations *Corresponding authors. E-mail addresses:
[email protected] (B. Mu) and
[email protected] (A. Wang); Fax: +86 931 4968019; Tel: +86 931 4868118. 1 © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 September 2020 confirmed that betanin was mainly adsorbed on the outer surface of Pal or Hal through hydrogen-bond interaction, and part of them also were entered into the inner surface of Hal via electrostatic interaction.