Mesozoic Birds of Mongolia and the Former USSR

Total Page:16

File Type:pdf, Size:1020Kb

Mesozoic Birds of Mongolia and the Former USSR Mesozoic birds of Mongolia and the former USSR EVGENII N. KUROCHKIN Introduction Institutional abbreviations The first Mesozoic avian skeletal remains from Asia IVPP, Institute of Vertebrate Palaeontology and were found in Mongolia by the Polish-Mongolian Palaeoanthropology, Beijing, China; IZASK, Institute Palaeontological Expedition (Elzanowski, 1974, 1976, of Zoology of the Kazakh Academy of Sciences, 1981). Feathers from the Late Cretaceous of Alma-Aty, Kazakhstan; JRMPE, Joint Russian- Kazakhstan were described by Bazhanov (1969) and Mongolian Palaeontological Expedition; MGI, Shilin (1977) and numerous fossil feathers from the Geological Institute of the Mongolian Academy of Lower Cretaceous of Mongolia and East Siberia were Sciences, Ulaanbaatar; PIN, Palaeontological Institute collected by palaeoentomologists from PIN at the of the Russian Academy of Sciences, Moscow, Russia; beginning of the 1970s. From the 1970s to the 1990s PO, Collection of the Zoological Institute of the skeletal remains of various avian fossils were recov- Russian Academy of Sciences, St. Petersburg, Russia; ered from the Cretaceous of Mongolia by the Joint TsNIGRI, F.N. Chernyshev Central Museum for Russian-Mongolian Palaeontological Expedition and Geological Exploration, St. Petersburg, Russia; VPM, in the Cretaceous of Middle Asia by the late Lev Volgograd Provincial Museum, Volgograd, Russia; Nesov as a result of his persistent exploration. ZPAL, Institute of Palaeobiology of the Polish Further remains of birds were found in recent years Academy of Sciences, Warsaw, Poland. in Central Asia by the American-Mongolian expedi- tions (see Chapter 12) and it now appears that earlier Systematic description American expeditions in the 1920s also recovered fossil birds, though they were not recognized as such Class Aves Linnaeus, 1758 until the 1990s (see Chiappe et al., 1996, and refs Subclass Sauriurae Haeckel, 1866 therein). Infraclass Enantiornithes Walker, 1981 Mesozoic birds from Mongolia and the former Order Alexornithiformes Brodkorb, 1976 Soviet Union (FSU) are rare and usually fragmentary, Family Alexornithidae Brodkorb, 1976 but they provide some data regarding the early history Contents. Gobipteryx Elzanowski, 1974; Alexornis of the group in this territory. In addition, many Brodkorb, 1976; Kizylkumavir Nesov, 1984; Zbyraornis Mesozoic birds have recently been found in China Nesov, 1984 (2 spp.); Nunantius Molnar, 1986 (2 spp.); (Chiappe, 1995). Together, these records provide the Sazavis Nesov and Yarkov, 1989; Neuquenornis Chiappe basis for analyses of Mesozoic avian assemblages in and Calvo, 1994; Lenesornir Kurochkin, 1996. Asia (Kurochkin, 199Sa). This chapter presents a Diagnosis. Cranial half of the synsacrum low and summary of Mesozoic birds from the FSU and broad; synsacrum convex dorsally; ischium narrow; Mongolia, primarily discovered by Russian palaeon- acrocoracoid and coracoidal process narrow and tologists. Avian macro-taxonomy follows Kurochkin tapered; shaft of the coracoid strut-like and narrow; (1995~). shaft of the coracoid with a deep and short depression on the dorsal side; scapular facet and scapular glenoid Kizylkumavis cretacea Nesov, 1984 fused; ventral epicondyle of the humerus protrudes Holotypr. TsNIGRI 5111 1915, distal fragment of a distad to a striking degree; wing digits clawless; shaft right humerus. Dzharakhuduk locality, Navoi District, of the tihiotarsus thin; metatarsal 111 straight; metatar- Rukhara Province, Uzbekistan. Outcrop CBI-Sa, sals 11-1V short and gracile. Rissekty Svita (Coniacian). Diagno.ri.r. Same as for genus. Kizylkumavis Nesov, 1 984 Comments. K cretacea is a very small enantiornithine; Type .rpecie.r. Kky1kumavi.r cretacea Nesov, 1984. the maximum width of the distal end of humerus is Diagnosis. Original diagnosis of Nesov (1984): olecra- 5.1 mm. K. creracea was the first member of the non fossa is narrow and displaced in the direction of Enantiornithes to be described from the Old World the flexor process; flexor process is strongly projected (Nesov, 1984), although in the original description it distally; dorsal condyle very narrow and aligned at an was assigned to Aves inccrrae sedis. In spite of its frag- angle of 65" to the longitudinal axis of the humeral mentary condition, there are no doubts as to the enan- shaft; ventral condyle is short, aligned almost trans- tiornithine relationships of K crctacea since it has no versely to the longitudinal axis of the humeral shaft, fossa for the .&I. brachiali.~,a transverse position of the and only slightly projected in cranial aspect; intercon- dorsal condyle of the humerus, and an inclined posi- dylar furrow runs slightly on the cranial side; brachial tion of the ventral condyle. depression is not developed; a small groove is devel- oped distal to a small ventral supracondylar tubercle Z~yraor?zisNesov, 1984 on the cranial surface of the distal end, and aligned at Type specie.^. Z&yraorni.r kashkarovi Nesov, 1084. an angle of 70" to the longitudinal axis of the shaft. content^: Z. kashkarovi Nesov, 1984; Z. logu?zovi Nesov, Commenr~:As I have not seen the specimen recently, 1002. the original diagnosis, which includes the generic Diag?zosi~:Cranial portion of the synsacrum notice- characters of Kizylkumavis, as well as characters of the ably convex dorsally; cranial end of the synsacrum Enantiornithes and Alexornithiformes is presented remarkahly broad; synsacrum only slightly broadened here. The following characters form an emended diag- across both sacral vertebrae; onty one thoracic verte- nosis for this genus: distal end of the humerus is very bra precedes two sacral vertebrae; caudal half of the wide in the dorsoventral direction; the ventral portion synsacrum long and narrow; the two largest costal of the distal end of the humerus is remarkably processes are inclined caudally; no longitudinal enlarged; the dorsal condyle is broad; the intercondy- groove on the ventral side of the synsacrum. lar furrow is narrow; and the flexor process is strongly Commenr.~.There are four species of bird from projected distally. Dzharakhuduk that are based on synsacra and The humeri of Kizylkumavis and Alexornir of Mexico assigned to the Ichthyornithiformes (Nesov, 1984, (Brodkorb, 1976) are similar in some respects. For 1986, 1990, 1992b, d; Nesov and Yarkov, 1989; example, they share: a remarkable distal projection of Nesov and Psnteleev, 1993). Comparison of these the ventral epicondyle, distal displacement of a remains with the synsacrum of ,lia?zantius valifanovi shallow olecranal fossa, and an abrupt transition from Kurochkin, 1996 showed that they should be the distal end to the shaft. However, they also exhibit assigned to the Enantiornirhes (Kurochkin, 1995c, some differences: the shape of the dorsal condyle 1996). (which is broad in Kizylkumavis and narrow and olive- shaped in Alexornis); a more spacious intercondylar Zhyraornis kashkarovi Nesov, 1984 furrow in Alexornis, and more distal projection of the Holotypc TsNIGRl42/11915, incomplete synsacrum, flexor process in Kizylkumavis. having at least seven coossified vertebrae and lacking the most caudal portion. Dzharakhuduk locality, Mesozoic birds of Mongolia and the former USSK Navoi District, Bukhara Province, Uzbekistan. 1.ene.ronzi.r Kurochkin, 1906 Outcrop CRI-4, Rissekty Svita (Coniacian). rypespecies. Lene.t.omi.r mcz/t.lhr-~~.kyi(Nesov, 1986). Diagnosis. First vertebra on synsacrum expands grad- Diagnn.ri.~: The cranial portion of the synsacrum is ually in the cranial direction; transverse processes on only slightly con\,es dorsally, the cranial articular the second sacral vertebra are slightly marked on the surfice of the synsjcrurn is transversely elongated; the dorsal surface; two pairs of the largest costal processes third and fourth vertehrae of the synsacrurn possess are slender and distinctly inclined length\vise; the the largest costal processes; the costal processes are at synsacrum is generally extended and narrow. a right angle to the sagittal plane; and the ventral comment.^. A thoracic vertebra (TsNIGRI 43/1191.i) groove is uide and shallow. from the Khodzhakulsai locality (lihodzhakul settle- Comments. This skmsacrum was described as ment, Karakalpakia, Uzbekistan; lihodzhakul Svita, Ichtbyov~~ismaltsh~z~skyi I)!. Nesov ( 1 98 6) in the lirnily Cenomanian) (Nesov, 1984, 1992b; Nesov and Borkin, lchthyornithidae (see also Nesov, 1992b, d). However, 1983), regarded as an indeterminate hlesozoic bird by the similarity ol' this hssil to .'n?za?ztius z~al~/2rnnvi Nesov (I 992d), a left scapula ('TsNIGRI 4411 1915) Kurochkin, 1006, and the at~undanceof postcranial and the shaft of a left humerus (TsNIGRI 45/11915) remains of Enantiornithes at the Dzharakhuduk from Dzharakhuduk (Nesor, 1984), were also assigned locality enabled it to be reidentihed as an enantiorni- to Z. kashkarovi. The vertebra has a wide neural canal, thine (Kurochkin, 1996). Because of a noticeable deep lateral excavations on the centrum, and nearly diff'erence from Zbyvanvflis, it was assigned to a separ- flat cranial and ca11da1 articular surfaces. It is compar- ate gent~s. able in size to the vertehrae of the synsacrum of Z. kashkaroz~j.The structure of the glenoid facet on the I,ene.rovui.r nzalt.sbev.rkyi (Nesov, 1 980) scapula and its acrornion show a certain similarity to Holo~ypc. PO 3434, cranial half of the s\ nsacrum. that of the enantiornithines, but this is not sufficient Dzharakhuduk locality, Navoi District. Bukhara evidence for its assignment to Z. kashkavovi 'She Province,
Recommended publications
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • PALEOGENE FOSSILS and the RADIATION of MODERN BIRDS HQ F
    The Auk 122(4):1049–1054, 2005 © The American Ornithologists’ Union, 2005. Printed in USA. OVERVIEW PALEOGENE FOSSILS AND THE RADIATION OF MODERN BIRDS Hq F. Jrx1 Division of Birds, MRC-116, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013, USA M birds arose mainly in 1989, Mayr and Manegold 2004), and others. the Neogene Period (1.8–23.8 mya), and mod- Paleogene fossils also document diverse extinct ern species mainly in the Plio-Pleistocene branches of the neornithine tree, ranging from (0.08–5.3 mya). Neogene fossil birds generally large pseudotoothed seabirds to giant fl ightless resemble modern taxa, and those that cannot land birds to small zygodactyl perching birds be a ributed to a modern genus or species (Ballmann 1969, Harrison and Walker 1976, can usually be placed in a modern family with Andors 1992). a fair degree of confi dence (e.g. Becker 1987, Before the Paleogene, fossils of putative neor- Olson and Rasmussen 2001). Fossil birds from nithine birds are sparse and fragmentary (Hope earlier in the Cenozoic can be more challeng- 2002), and their phylogenetic placement is all ing to classify. The fossil birds of the Paleogene the more equivocal. The Paleogene is thus a cru- (23.8–65.5 mya) are clearly a ributable to the cial time period for understanding the history of Neornithes (modern birds), and the earliest diversifi cation of birds, particularly with respect well-established records of most traditional to the deeper branches of the neornithine tree. orders and families of modern birds occur then.
    [Show full text]
  • Download Vol. 11, No. 3
    BULLETIN OF THE FLORIDA STATE MUSEUM BIOLOGICAL SCIENCES Volume 11 Number 3 CATALOGUE OF FOSSIL BIRDS: Part 3 (Ralliformes, Ichthyornithiformes, Charadriiformes) Pierce Brodkorb M,4 * . /853 0 UNIVERSITY OF FLORIDA Gainesville 1967 Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM are pub- lished at irregular intervals. Volumes contain about 800 pages and are not nec- essarily completed in any one calendar year. WALTER AuFFENBERC, Managing Editor OLIVER L. AUSTIN, JA, Editor Consultants for this issue. ~ HILDEGARDE HOWARD ALExANDER WErMORE Communications concerning purchase or exchange of the publication and all manuscripts should be addressed to the Managing Editor of the Bulletin, Florida State Museum, Seagle Building, Gainesville, Florida. 82601 Published June 12, 1967 Price for this issue $2.20 CATALOGUE OF FOSSIL BIRDS: Part 3 ( Ralliformes, Ichthyornithiformes, Charadriiformes) PIERCE BRODKORBl SYNOPSIS: The third installment of the Catalogue of Fossil Birds treats 84 families comprising the orders Ralliformes, Ichthyornithiformes, and Charadriiformes. The species included in this section number 866, of which 215 are paleospecies and 151 are neospecies. With the addenda of 14 paleospecies, the three parts now published treat 1,236 spDcies, of which 771 are paleospecies and 465 are living or recently extinct. The nominal order- Diatrymiformes is reduced in rank to a suborder of the Ralliformes, and several generally recognized families are reduced to subfamily status. These include Geranoididae and Eogruidae (to Gruidae); Bfontornithidae
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]
  • Dinosaur Incubation Periods Directly Determined from Growth-Line Counts in Embryonic Teeth Show Reptilian-Grade Development
    Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development Gregory M. Ericksona,1, Darla K. Zelenitskyb, David Ian Kaya, and Mark A. Norellc aDepartment of Biological Science, Florida State University, Tallahassee, FL 32306-4295; bDepartment of Geoscience, University of Calgary, Calgary, AB, Canada T2N 1N4; and cDivision of Paleontology, American Museum of Natural History, New York, NY 10024 Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved December 1, 2016 (received for review August 17, 2016) Birds stand out from other egg-laying amniotes by producing anatomical, behavioral and eggshell attributes of birds related to relatively small numbers of large eggs with very short incubation reproduction [e.g., medullary bone (32), brooding (33–36), egg- periods (average 11–85 d). This aspect promotes high survivorship shell with multiple structural layers (37, 38), pigmented eggs (39), by limiting exposure to predation and environmental perturba- asymmetric eggs (19, 40, 41), and monoautochronic egg pro- tion, allows for larger more fit young, and facilitates rapid attain- duction (19, 40)] trace back to their dinosaurian ancestry (42). For ment of adult size. Birds are living dinosaurs; their rapid development such reasons, rapid avian incubation has generally been assumed has been considered to reflect the primitive dinosaurian condition. throughout Dinosauria (43–45). Here, nonavian dinosaurian incubation periods in both small and Incubation period estimates using regressions of typical avian large ornithischian taxa are empirically determined through growth- values relative to egg mass range from 45 to 80 d across the line counts in embryonic teeth.
    [Show full text]
  • Speciation 1
    1/17/2012 Avian Systematics Avian Systematics • The goal of systematics (and classification) is to provide a correct • Systematics deals with evolutionary phylogeny (evolutionary family tree) for relationships among organisms. Allied organisms. with classification (or taxonomy). • Avian systematics deals with how the • All birds are classified within the single phylogeny of modern birds is Class Aves established. – 2 Subclasses – 4 Infraclasses Class Aves • Subclass Sauriurae – Infraclass Archaeornithes - Archaeopteryx – Infraclass Enantiornithes - Opposite birds • Subclass Ornithurae – Infraclass Odontornithes - New World toothed birds – Infraclass Neornithes • Superorder Paleognathae - ratites and tinamous • Superorder Neognathae - all other birds Avian Phylogeny based on Feduccia (1995) 1 1/17/2012 Avian Systematics Avian Systematics • Living birds comprise approximately: • Basic unit of classification = Species – 30 Orders – 193 Families – 2,099 Genera – 9,700 species I. Speciation 1. BSC – groups of interbreeding natural populations that are reproductively isolated from other such groups (Mayr 1970) Central question > Origin of species What does one use to group taxa? A. What is a species? •size • color • behavior • genetics 2 1/17/2012 What are the problems associated with Painted Bunting using this definition? When populations hybridize we can directly define a species. What if two populations are separated? Thompson 1991 Condor 93:987-1000 Phylogenetic Species Concept •Approach gives greater weight to recognition PSC – a species is the smallest aggregation of of separate evolutionary histories of isolated populations diagnosable by a unique populations. combination of character states in individuals •Less emphasis placed on development of within which there is a parental pattern of reproductive isolation. ancestry and descent 3 1/17/2012 •American Ornithologists’ Union Committee on Classification and Nomenclature only recognizes BSC.
    [Show full text]
  • On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia)
    diversity Article On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia) Amanda Falk 1, Jingmai O’Connor 2,3,* , Min Wang 2,3 and Zhonghe Zhou 2,3,* 1 Biology Department, Centre College, 600 W. Walnut St. Danville, KY 40422, USA; [email protected] 2 Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing 100044, China; [email protected] 3 CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China * Correspondence: [email protected] (J.O.); [email protected] (Z.Z.) Received: 27 October 2019; Accepted: 10 November 2019; Published: 11 November 2019 Abstract: The Confuciusornithiformes represent the most stem-ward avian occurrence of an edentulous rostrum. Although a keratinous beak is widely considered to have covered the rostrum in confuciusornithiforms, this feature is almost never preserved, having been previously reported only in the holotype of Confuciusornis dui and the holotype of Eoconfuciusornis zhengi. This strongly contrasts with the widespread preservation of the keratinous sheaths that cover the manual and pedal ungual phalanges. Here, we report on a third occurrence of a preserved rhamphotheca in a specimen of Confuciusornis sanctus. We illuminated the preserved traces using laser-stimulated fluorescence. Similarly to E. zhengi, the rhamphotheca has been preserved only as a two-dimensional trace, whereas ungual sheaths are preserved in three dimensions. In contrast to the traces preserved in C. dui, the rhamphotheca in the discussed specimen of C. sanctus is straight rather than upturned. This hints towards hidden morphological diversity within the thousands of Confuciusornis specimens, in which species may be further differentiated by soft tissue features or behaviors, much like many living birds, that cannot be detected in fossils, even with exceptional preservation.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Anatomy of the Early Cretaceous Enantiornithine Bird Rapaxavis Pani
    Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani JINGMAI K. O’CONNOR, LUIS M. CHIAPPE, CHUNLING GAO, and BO ZHAO O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B. 2011. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56 (3): 463–475. The exquisitely preserved longipterygid enantiornithine Rapaxavis pani is redescribed here after more extensive prepara− tion. A complete review of its morphology is presented based on information gathered before and after preparation. Among other features, Rapaxavis pani is characterized by having an elongate rostrum (close to 60% of the skull length), rostrally restricted dentition, and schizorhinal external nares. Yet, the most puzzling feature of this bird is the presence of a pair of pectoral bones (here termed paracoracoidal ossifications) that, with the exception of the enantiornithine Concornis lacustris, are unknown within Aves. Particularly notable is the presence of a distal tarsal cap, formed by the fu− sion of distal tarsal elements, a feature that is controversial in non−ornithuromorph birds. The holotype and only known specimen of Rapaxavis pani thus reveals important information for better understanding the anatomy and phylogenetic relationships of longipterygids, in particular, as well as basal birds as a whole. Key words: Aves, Enantiornithes, Longipterygidae, Rapaxavis, Jiufotang Formation, Early Cretaceous, China. Jingmai K. O’Connor [[email protected]], Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwaidajie, Beijing, China, 100044; The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 USA; Luis M. Chiappe [[email protected]], The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Ex− position Boulevard, Los Angeles, CA 90007 USA; Chunling Gao [[email protected]] and Bo Zhao [[email protected]], Dalian Natural History Museum, No.
    [Show full text]
  • (Aves: Palaeognathae) from the Paleocene (Tiffanian) of Southern California
    PaleoBios 31(1):1–7, May 13, 2014 A lithornithid (Aves: Palaeognathae) from the Paleocene (Tiffanian) of southern California THOMAS A. STIDHAM,1* DON LOFGREN,2 ANDREW A. FARKE,2 MICHAEL PAIK,3 and RACHEL CHOI3 1Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; e-mail: [email protected], corresponding author. 2Raymond M. Alf Museum of Paleontology, Claremont, California 91711, USA. 3 The Webb Schools, Claremont, California 91711, USA The proximal end of a bird humerus recovered from the Paleocene Goler Formation of southern California is the oldest Cenozoic record of this clade from the west coast of North America. The fossil is characterized by a relatively large, dorsally-positioned head of the humerus and a subcircular opening to the pneumotricipital fossa, consistent with the Lithornithidae among known North American Paleocene birds, and is similar in size to Lithornis celetius. This specimen from the Tiffanian NALMA extends the known geographic range of lithornithids outside of the Rocky Mountains region in the United States. The inferred coastal depositional environment of the Goler Formation is consistent with a broad ecological niche of lithornithids. The age and geographic distribution of lithornithids in North America and Europe suggests these birds dispersed from North America to Europe in the Paleocene or by the early Eocene. During the Paleogene the intercontinental dispersal of lithornithids likely occurred alongside other known bird and mammalian movements that were facilitated by climatic and sea level changes. Keywords: bird humerus, fossil, Lithornithidae, Goler Formation, Tiffanian, California INTRODUCTION largely unknown in North America.
    [Show full text]
  • Zoologische Mededelingen 79-03
    Belatedly hatching ornithology collections at the National Museum of Ireland J.D. Sigwart, E. Callaghan, A. Colla, G.J. Dyke, S.L. McCaffrey & N.T. Monaghan Sigwart, J.D., E. Callaghan, A. Colla, G.J. Dyke, S.L. McCaffrey & N.T. Monaghan. Belatedly hatching ornithology collections at the National Museum of Ireland. Zool. Med. Leiden 79-3 (2), 30-ix-2005, 19-28.— ISSN 0024-0672. Julia D. Sigwart, & Nigel T. Monaghan, Natural History Division, National Museum of Ireland, Merrion Street, Dublin 2, Ireland (e-mail: [email protected]; [email protected]). Alessia Colla, c/o European Career Evolution 19 The Priory, Old Chapel, Bandon, Co. Cork, Ireland (e-mail: [email protected]). Eric Callaghan, Gareth J. Dyke, & Sarah L. McCaffrey, Department of Zoology, University College Dub- lin, Belfield, Dublin 4, Ireland (e-mail: [email protected]; [email protected]; sarahmccaffrey@hotmail. com). Keywords: non-passerine birds; museum collections; museum education; collection database. For the first time, summary details are presented for the ornithological collections of the National Museum of Ireland (Natural History) (NMINH). To date, new cataloguing efforts in collaboration with Univer- sity College Dublin have documented close to 10,000 non-passerine bird skins and taxidermy mounts. Introduction The Natural History Museum in Dublin is well known internationally as an intact example of a Victorian-style cabinet museum (O’Riordan, 1976; Gould, 1994). Founded in 1792, the zoological collections grew rapidly since their inception, soon demanding their installation in a dedicated building in 1857. Twenty years later, in 1877, steward- ship of the Museum was transferred from the Royal Dublin Society (RDS) to the State.
    [Show full text]