Species Profile Amazonian Tapir (Taprius Terestris)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Occurrence of Black-Chinned Hummingbird in Alabama
RARE OCCURRENCE First occurrence of Black-chinned Bummingbirdin Alabama With notes on identification Greg D. Jackson Photo/GregD. Jackson. 178 AmericanBirds, Summer 1988 observeddunng the courseof the hum- taft-pumpingof the Black-ch•nned•s b•rd (ArchtlochusalexandrO has m•ngb•rd'sstay. The b•rd wasthe same very noticeable whfie feeding, and •s beenHEBLACK-CHINNEDreported casually from HUMMING- Florida sizeas a Ruby-throated Hummingbird. generallymore frequentand persistent (Hoffman 1983)and is an annualvisitor The bill waslonger than that of a Ruby- than that shownby the Ruby-throated to southeasternLouisiana (N. L. New- throated. The wingswere pointed, but Hummingbird (N. L. Newfield pers field pers. comm.), but until January the outermostprimary had an obtuse comm.). Immature males of either spe- 1984 had never been recorded in Ala- subterminal angulation and a broad, ciescan showsome characteristic gorget bama. Besides the breeding Ruby- blunt tip. The tail, which was pumped colorby early fall (Scott 1983). throated Hummingbird (Archilochus constantlywhile feeding,had a mod- colubris),the only other member of this eratelydeep central notch when folded, family recordedin Alabamais the Ru- and was rather square with a shallow fousHummingbird (Selasphorus rufus), notch when spread.The crown and face which is a rare visitorin migrationand weredark gray-green.There wasa short w•nter (Imhof 1976). The first docu- white stripe posterior to the eye. The mented occurrence of the Black- dorsal surface of the tail showed black ACKNOWLEDGMENTS ch•nned Hummingbird in the state is outer rectrices and dark green inner from the Spring Hill district of Mobile rectrices.The remainder of the upper- The author is grateful to Nancy L. -
Amazing Facts the King Vulture Is the Only Surviving Member of the Genus Sarcoramphus
King Vulture Sarcoramphus papa Bird Scientific Name Sarcoramphus papa Other Names None Range South and Central America from Mexico to northern Argentina Habitat Savannas, tropical forests and grasslands Description A large, white vulture with grayish-black wings and tail feathers, and a pronounced skin flap (caruncle) on the upper beak. The head and neck are bald with the skin color varying in Behavior color including yellow, orange, blue, purple, These birds are diurnal, spending their daytime hours soaring high in and red. the sky on thermals searching for food using keen eyesight. They are Average Size considered resident birds that are non-migratory and maintain a set Height: 20 in. home range. King Vultures are often seen alone or in small family groups Wingspan: 5.5 – 6.5 ft. numbering approximately 15 individuals, and will tolerate other animals and Weight: 6 – 10 lbs. vulture species in the same proximity. Even though they are the dominant vulture at the feeding site and usually the first to arrive, they are not Lifespan territorial with the smaller vultures that feed alongside them. In the wild: Estimated at 25 years The head and neck of the King Vulture lack feathers to help prevent In captivity: Up to 35 years infections and to keep the remains of the carcass from damaging the feathers. After eating, Vultures relax in the sun and allow the heat to bake Diet off the bacteria. In the wild: Carrion In captivity: Rodents, fish and prepared meat Reproduction and Breeding Incubation There is limited information on wild courtship and breeding of this species, 53 – 58 days but because they breed well in captivity, there is reliable data from numerous captive settings. -
Mantodea (Insecta), with a Review of Aspects of Functional Morphology and Biology
aua o ew eaa Ramsay, G. W. 1990: Mantodea (Insecta), with a review of aspects of functional morphology and biology. Fauna of New Zealand 19, 96 pp. Editorial Advisory Group (aoimes mae o a oaioa asis MEMBERS AT DSIR PLANT PROTECTION Mou Ae eseac Cee iae ag Aucka ew eaa Ex officio ieco — M ogwo eae Sysemaics Gou — M S ugae Co-opted from within Systematics Group Dr B. A ooway Κ Cosy UIESIIES EESEAIE R. M. Emeso Eomoogy eame ico Uiesiy Caeuy ew eaa MUSEUMS EESEAIE M R. L. ama aua isoy Ui aioa Museum o iae ag Weigo ew eaa OESEAS REPRESENTATIVE J. F. awece CSIO iisio o Eomoogy GO o 1700, Caea Ciy AC 2601, Ausaia Series Editor M C ua Sysemaics Gou SI a oecio Mou Ae eseac Cee iae ag Aucka ew eaa aua o ew eaa Number 19 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy G W Ramsay SI a oecio M Ae eseac Cee iae ag Aucka ew eaa emoa us wig mooogy eosigma cooaio siuaio acousic sesiiiy eece eaiou egeeaio eaio aasiism aoogy a ie Caaoguig-i-uicaio ciaio AMSAY GW Maoea (Iseca – Weigo SI uisig 199 (aua o ew eaa ISS 111-533 ; o 19 IS -77-51-1 I ie II Seies UC 59575(931 Date of publication: see cover of subsequent numbers Suggese om o ciaio amsay GW 199 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy Fauna of New Zealand [no.] 19. —— Fauna o New Zealand is eae o uicaio y e Seies Eio usig comue- ase e ocessig ayou a ase ie ecoogy e Eioia Aisoy Gou a e Seies Eio ackowege e oowig co-oeaio SI UISIG awco – sueisio o oucio a isiuio M C Maews – assisace wi oucio a makeig Ms A Wig – assisace wi uiciy a isiuio MOU AE ESEAC CEE SI Miss M oy -
Sirenian Feeding Apparatus: Functional Morphology of Feeding Involving Perioral Bristles and Associated Structures
THE SIRENIAN FEEDING APPARATUS: FUNCTIONAL MORPHOLOGY OF FEEDING INVOLVING PERIORAL BRISTLES AND ASSOCIATED STRUCTURES By CHRISTOPHER DOUGLAS MARSHALL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNrVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REOUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1997 DEDICATION to us simply as I dedicate this work to the memory of J. Rooker (known "Rooker") and to sirenian conservation. Rooker was a subject involved in the study during the 1993 sampling year at Lowry Park Zoological Gardens. Rooker died during the red tide event in May of 1996; approximately 140 other manatees also died. During his rehabilitation at Lowry Park Zoo, Rooker provided much information regarding the mechanism of manatee feeding and use of the perioral bristles. The "mortality incident" involving the red tide event in southwest Florida during the summer of 1996 should serve as a reminder that the Florida manatee population and the status of all sirenians is precarious. Although some estimates suggest that the Florida manatee population may be stable, annual mortality numbers as well as habitat degradation continue to increase. Sirenian conservation and research efforts must continue. ii ACKNOWLEDGMENTS Research involving Florida manatees required that I work with several different government agencies and private parks. The staff of the Sirenia Project, U.S. Geological Service, Biological Resources Division - Florida Caribbean Science Center has been most helpful in conducting the behavioral aspect of this research and allowed this work to occur under their permit (U.S. Fish and Wildlife Permit number PRT-791721). Numerous conversations regarding manatee biology with Dr. -
The Genus Metallyticus Reviewed (Insecta: Mantodea)
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228623877 The genus Metallyticus reviewed (Insecta: Mantodea) Article · September 2008 CITATIONS READS 11 353 1 author: Frank Wieland Pfalzmuseum für Naturkunde - POLLICHIA-… 33 PUBLICATIONS 113 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Frank Wieland letting you access and read them immediately. Retrieved on: 24 October 2016 Species, Phylogeny and Evolution 1, 3 (30.9.2008): 147-170. The genus Metallyticus reviewed (Insecta: Mantodea) Frank Wieland Johann-Friedrich-Blumenbach-Institut für Zoologie & Anthropologie und Zoologisches Museum der Georg-August-Universität, Abteilung für Morphologie, Systematik und Evolutionsbiologie, Berliner Str. 28, 37073 Göttingen, Germany [[email protected]] Abstract Metallyticus Westwood, 1835 (Insecta: Dictyoptera: Mantodea) is one of the most fascinating praying mantids but little is known of its biology. Several morphological traits are plesiomorphic, such as the short prothorax, characters of the wing venation and possibly also the lack of discoidal spines on the fore femora. On the other hand, Metallyticus has autapomor- phies which are unique among extant Mantodea, such as the iridescent bluish-green body coloration and the enlargement of the first posteroventral spine of the fore femora. The present publication reviews our knowledge of Metallyticus thus providing a basis for further research. Data on 115 Metallyticus specimens are gathered and interpreted. The Latin original descriptions of the five Metallyticus species known to date, as well as additional descriptions and a key to species level that were originally published by Giglio-Tos (1927) in French, are translated into English. -
The Giant Sea Mammal That Went Extinct in Less Than Three Decades
The Giant Sea Mammal That Went Extinct in Less Than Three Decades The quick disappearance of the 30-foot animal helped to usher in the modern science of human-caused extinctions. JACOB MIKANOWSKI, THE ATLANTIC 4/19/17 HTTPS://WWW.THEATLANTIC.COM/SCIENCE/ARCHIVE/2017/04/PLEIST OSEACOW/522831/ The Pleistocene, the geologic era immediately preceding our own, was an age of giants. North America was home to mastodons and saber-tooth cats; mammoths and wooly rhinos roamed Eurasia; giant lizards and bear-sized wombats strode across the Australian outback. Most of these giants died at the by the end of the last Ice Age, some 14,000 years ago. Whether this wave of extinctions was caused by climate change, overhunting by humans, or some combination of both remains a subject of intense debate among scientists. Complicating the picture, though, is the fact that a few Pleistocene giants survived the Quaternary extinction event and nearly made it intact to the present. Most of these survivor species found refuge on islands. Giant sloths were still living on Cuba 6,000 years ago, long after their relatives on the mainland had died out. The last wooly mammoths died out just 4,000 years ago. They lived in a small herd on Wrangel Island north of the Bering Strait between the Chukchi and East Siberian Seas. Two-thousand years ago, gorilla-sized lemurs were still living on Madagascar. A thousand years ago, 12-foot-tall moa birds were still foraging in the forests of New Zealand. Unlike the other long-lived megafauna, Steller’s sea cows, one of the last of the Pleistocene survivors to die out, found their refuge in a remote scrape of the ocean instead of on land. -
Open Pritchard Dissertation 2018
The Pennsylvania State University The Graduate School Department of Ecosystem Science and Management A LANDSCAPE OF FEAR: MEASURING NUTRITIONAL AND PSYCHOLOGICAL STRESS IN PREDATOR-PREY INTERACTIONS A Dissertation in Wildlife and Fisheries Science by Catharine Pritchard © 2018 Catharine Pritchard Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2018 The dissertation of Catharine Pritchard was reviewed and approved* by the following: Tracy Langkilde Professor and Head of Biology, The Pennsylvania State University Dissertation Advisor C. Paola Ferreri Associate Professor of Fisheries Management, The Pennsylvania State University Chair of Committee Victoria Braithwaite Professor, The Pennsylvania State University Matthew Marshall Adjunct Assistant Professor of Wildlife Conservation, The Pennsylvania State University Michael Messina Professor and Head of Ecosystem Science and Management, The Pennsylvania State University *Signatures are on file in the Graduate School iii ABSTRACT Animals commonly respond to stimuli, including risk of predation, nutritional deficits, and disturbance through the stress response. The most commonly measured stress hormones, glucocorticoids (GCs), then generally become elevated, energy is diverted away from non- essential processes, and behavior is modified to facilitate short-term survival. Because GCs can be collected noninvasively, they are candidates for evaluating health in wild animals. However, few studies have tested critical assumptions about GCs and -
Overkill, Glacial History, and the Extinction of North America's Ice Age Megafauna
PERSPECTIVE Overkill, glacial history, and the extinction of North America’s Ice Age megafauna PERSPECTIVE David J. Meltzera,1 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved September 23, 2020 (received for review July 21, 2020) The end of the Pleistocene in North America saw the extinction of 38 genera of mostly large mammals. As their disappearance seemingly coincided with the arrival of people in the Americas, their extinction is often attributed to human overkill, notwithstanding a dearth of archaeological evidence of human predation. Moreover, this period saw the extinction of other species, along with significant changes in many surviving taxa, suggesting a broader cause, notably, the ecological upheaval that occurred as Earth shifted from a glacial to an interglacial climate. But, overkill advocates ask, if extinctions were due to climate changes, why did these large mammals survive previous glacial−interglacial transitions, only to vanish at the one when human hunters were present? This question rests on two assumptions: that pre- vious glacial−interglacial transitions were similar to the end of the Pleistocene, and that the large mammal genera survived unchanged over multiple such cycles. Neither is demonstrably correct. Resolving the cause of large mammal extinctions requires greater knowledge of individual species’ histories and their adaptive tolerances, a fuller understanding of how past climatic and ecological changes impacted those animals and their biotic communities, and what changes occurred at the Pleistocene−Holocene boundary that might have led to those genera going extinct at that time. Then we will be able to ascertain whether the sole ecologically significant difference between previous glacial−interglacial transitions and the very last one was a human presence. -
Handraising Exotic Animals Western Plains
HANDRAISING EXOTIC ANIMALS WESTERN PLAINS ZOO GENERAL DIRECTIVES: * All neonates (newborn) to be given colostrum for the first 24 - 36 hours where possible. Bovids, cervids, camelids, hippos etc. (order: Artiodactyla) to receive bovine colostrum. Equids, tapir, rhinos etc. (order: Perissodactyla) to receive equine colostrum. * All milk formulas to be gradually increased to 100% strength concentrations as recommended. i.e. Commence at 25% - 50% concentrations supplemented with vytrate, staged up by 25% at 24 hour intervals until 100% is reached. Use pre-boilded water to make up formulas. * Young to be fed 12 - 20% of their bodyweight in milk formula each day, divided equally between feeds. If innadequate volumes of formula are suckled then the neonate is to be tube fed until intake is adequate from the bottle. * Number of feeds per day is determined by species. * Weigh initially and weight gain/loss to be monitored at least weekly. * Routine is extremely important. Feeding times must be set and adhered to. It is usually better for one person to initiate feeding and to introduce other feeders as soon as possible to avoid neonates imprinting on one person. * All young need to be stimulated to urinate and defaecate after each feed by gentle patting - never rub. Ensure they are left clean afterwards. * Hygiene is of great importance. Bottles and teats need to be washed thoroughly and soaked in sterilising solution (Halasept). Utensils are to be rinsed with pre-boiled water before use. Face wipes are not shared with anus wipes etc. Cloths to be washed daily. All young to be left with a clean mouth after the feed (includes chin, lips etc.) * Milk temperature is to be fed at body temperature. -
New Records of Cracids Along a Fragmented Landscape in Cen- Tral
Biodiversity Journal , 2018, 9 (4): 339–344 DOI: 10.31396/Biodiv.Jour.2018.9.4.339.344 New records of Cracids along a fragmented landscape in Cen - tral Mexico (Aves Cracidae) Lorena Silverio-Polo 1, O. Eric Ramírez-Bravo 2* , Casimiro Ordóñez-Prado 3 & Guillermo Ortega Vázquez 4 1Sitio Experimental Las Margaritas, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 9.5 Carretera Hueytamalco-Tenampulco, Las Margaritas Hueytamalco, Puebla, 73580 México 2Grupo de Investigación en Biodiversidad, Alimentación y Cambio Climático, Instituto de Ciencias de la Benemérita Uni - versidad Autónoma de Puebla, Edificio IC 10 Ciudad Universitaria Colonia San Manuel, Puebla, 72570 México 3Campo Experimental San Martinito, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 56.5 Car - retera Federal México-Puebla, San Martinito Puebla, 74100 México 4Instituto Tecnológico Superior de Zacapoaxtla, Carretera Acuaco-Zacapoaxtla km 8, Colonia Totoltepec, Zacapoaxtla Pue - bla, 73680 México *Corresponding author, e-mail: [email protected] ABSTRACT The pava cojolita or crested guan ( Penelope purpurascens Wagler, 1830) and the great curas - sow ( Crax rubra Linnaeus, 1758) (Aves Cracidae) inhabit mature rainforests with low or null perturbation, making them potential indicator species. We report actual records of both species obtained through biodiversity monitoring undertaken in the Experimental Site “Las Margar - itas” in the municipality of Hueytamalco at the Sierra Nororiental in the State -
Klamath Network Featured Creature August 2009
National Park Service U.S. Department of the Interior Klamath Network Featured Creature August 2009 Black-chinned Hummingbird FIELD NOTES: (Archilochus alexandri) General Description: Reproduction: The Black-chinned Hummingbird is a small to The male will court the female with a medium-sized hummingbird, about 3 ¼ inches series of shallow dips and a high-pitched long at maturity and weighing about 3 g or 0.1 warbling song. After mating, the male oz. The bill is long, straight, and thin. Adults returns to his loner life. The female have brilliantly shiny green backs, green sides, builds a well-camouflaged nest, taking and a white belly. As the name implies, males about 3 days to construct it. A. alexandri have a dark head and chin. The males also have nests about 4-8 feet high in a tree, often an iridescent violet throat band and a dark over water, and along a drooping or forked tail. The less conspicuous female has a forked branch. The down of young white-tipped rounded tail and a few black dots sycamore trees and other plants is on the throat instead of a patch, similar in looks woven together with spider webs and to the female Ruby-throated Hummingbird. lichens make a soft, elastic nest. The Juvenile males resemble females but are elasticity of the nest allows it to expand distinguishable by a dark streak on the throat. to double its size while the chicks are growing larger inside. Two to three eggs Habitat and Distribution: are laid between April and September, Although highly territorial, the Black-chinned depending on location. -
Tapir Tracks Dear Educator
TAPIR TRACKS A Curriculum Guide for Educators 2 Tapir Tracks Dear Educator, Welcome to Tapir Tracks! This curriculum was created for classroom teachers and educators at zoos and other nonformal science learning centers to enable you and your students to discover tapirs of the Americas and Asia. Because tapirs spread seeds from the fruits they eat, these little-known mammals are essential to the health of the forests they inhabit. However, tapir populations are rapidly declining. Loss of their habitat and hunting threaten tapir survival. An international team of scientists and conservationists works to study wild tapirs, manage the zoo-based population, protect habitat, and educate local communities. We collaborate through the Tapir Specialist Group, of the International Union for Conservation of Nature (IUCN) Species Survival Commission. This packet includes background information along with lesson plans and activities that can easily be adapted for kindergarten, elementary and secondary school students (grades K-12). An online link is included for you to download images and videos to use in your teaching: http://tapirs.org/resources/educator-resources. This toolkit is designed to enable you to meet curriculum requirements in multiple subjects. Students can explore the world’s tapirs through science, environmental studies, technology, social studies, geography, the arts and creative writing activities. We hope that by discovering tapirs through these lessons and engaging activities that students will care and take action to protect tapirs