Controlling Access to Servers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CIS Debian Linux 7 Benchmark V1.0.0 - 12-31-2015
CIS Debian Linux 7 Benchmark v1.0.0 - 12-31-2015 http://benchmarks.cisecurity.org The CIS Security Benchmarks division provides consensus-oriented information security products, services, tools, metrics, suggestions, and recommendations (the “SB Products”) as a public service to Internet users worldwide. Downloading or using SB Products in any way signifies and confirms your acceptance of and your binding agreement to these CIS Security Benchmarks Terms of Use. CIS SECURITY BENCHMARKS TERMS OF USE BOTH CIS SECURITY BENCHMARKS DIVISION MEMBERS AND NON-MEMBERS MAY: Download, install, and use each of the SB Products on a single computer, and/or Print one or more copies of any SB Product that is in a .txt, .pdf, .doc, .mcw, or .rtf format, but only if each such copy is printed in its entirety and is kept intact, including without limitation the text of these CIS Security Benchmarks Terms of Use. UNDER THE FOLLOWING TERMS AND CONDITIONS: SB Products Provided As Is. CIS is providing the SB Products “as is” and “as available” without: (1) any representations, warranties, or covenants of any kind whatsoever (including the absence of any warranty regarding: (a) the effect or lack of effect of any SB Product on the operation or the security of any network, system, software, hardware, or any component of any of them, and (b) the accuracy, utility, reliability, timeliness, or completeness of any SB Product); or (2) the responsibility to make or notify you of any corrections, updates, upgrades, or fixes. Intellectual Property and Rights Reserved. You are not acquiring any title or ownership rights in or to any SB Product, and full title and all ownership rights to the SB Products remain the exclusive property of CIS. -
1 Introduction
Technical report, IDE1202, February 2012 Enhancing Network Security in Linux Environment Master Thesis in Computer Network Engineering By Ali Mohammed, Sachin Sama and Majeed Mohammed School of Information Science, Computer and Electrical Engineering Halmstad University i Enhancing Network Security in Linux Environment Master Thesis in Computer Network Engineering School of Information Science, Computer and Electrical Engineering Halmstad University Box 823, S-301 18 Halmstad, Sweden February 2012 ii Preface First of all, we would like to express our sincere gratitude to our Supervisor Philip Heimer and Professor Tony Larsson for their supervision and assistance in the entire thesis work. We are also thankful to IDE department, Halmstad University for providing this opportunity to complete this thesis. Ali Mohammed Sachin Sama Majeed Mohammed iii iv Abstract Designing a secured network is the most important task in any enterprise or organization development. Securing a network mainly involves applying policies and procedures to protect different network devices from unauthorized access. Servers such as web servers, file servers, mail servers, etc., are the important devices in a network. Therefore, securing these servers is the first and foremost step followed in every security implementation mechanism. To implement this, it is very important to analyse and study the security mechanisms provided by the operating system. This makes it easier for security implementation in a network. This thesis work demonstrates the tasks needed to enhance the network security in Linux environment. The various security modules existing in Linux makes it different from other operating systems. The security measures which are mainly needed to enhance the system security are documented as a baseline for practical implementation. -
Access Control Framework
This material is based on work supported by the National Science Foundation under Grant No. 0802551 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author (s) and do not necessarily reflect the views of the National Science Foundation C5L1S1 When working for an institution as a Linux Administrator, you may be required to protect certain information based on its sensitivity. For instance, most organizations will have an internal network in which data contained in certain directories or drives are made public—employees can access the contents. However, certain kinds of information such as employee salaries, classified research, secret prototypes, health information, military secrets, and private communications are considered highly sensitive and are usually restrictedU the from everyone except very few people authorized to access the data. In this lesson, we will explore processes, tools, and control lists that make it possible to limit access to sensitive data on a Linux-based system. Understanding this topic is important for any system administrator configuring systems in the workplace that require access control mechanisms. C5L1S2 You should know what will be expected of you when you complete this lesson. These expectations are presented as objectives. Objectives are short statements of expectations that tell you what you must be able to do, perform, learn, or adjust after reviewing the lesson. Lesson Objective: U the Given the need to secure a Linux server, the student will recommend a set of standard Linux tools such as PAM, Access Control Lists, and TCP Wrappers to effectively secure a Linux system and demonstrate the use of one set of tools for system lock-down. -
My Name Is Robert Kudyba and I Am the System Administrator for The
My name is Robert Kudyba and I am the System Administrator for the Department of Computer Science here at Fordham University and a recent graduate of the Master’s in Cybersecurity. The lab will require you to install VirtualBox with Ubuntu preferable from osboxes.org. The commands listed in the lab will assume you have installed this image. Any Ubuntu version will work but if you installed from ubuntu.com then you will have to substitute the username you created for every place I reference osboxes. If you use Kali, you will be using the root user and there may be other issues as I’ve only confirmed everything works on Ubuntu. 1 In this lab, I will be gong over Linux remote access protocols Telnet and SSH, providing a history, the various encryption methods used, the concept of security through obscurity, a program called Fail2ban, how to use a Certificate Authority in OpenSSH, TCPWrapper, and Port Knocking. 2 • Telnet is a simple, text-based network protocol that is used for accessing remote computers over TCP/IP networks like the Internet. Telnet was created and launched in 1969. • Prior to telnet, you had to physically walk to a server in order to access its data. This meant, among other things, that you had to spend some time arriving at the server's location and then you had to wait for your turn to work with the server. Even if the server had the hardware power to do multiple things at the same time, you were blocked from using if someone was before you so you had to wait for others to finish their work first. -
Abstract Introduction Methodology
Kajetan Hinner (2000): Statistics of major IRC networks: methods and summary of user count. M/C: A Journal of Media and Culture 3(4). <originally: http://www.api-network.com/mc/0008/count.html> now: http://www.media-culture.org.au/0008/count.html - Actual figures and updates: www.hinner.com/ircstat/ Abstract The article explains a successful approach to monitor the major worldwide Internet Relay Chat (IRC) networks. It introduces a new research tool capable of producing detailed and accurate statistics of IRC network’s user count. Several obsolete methods are discussed before the still ongoing Socip.perl program is explained. Finally some IRC statistics are described, like development of user figures, their maximum count, IRC channel figures, etc. Introduction Internet Relay Chat (IRC) is a text-based service, where people can meet online and chat. All chat is organized in channels which a specific topic, like #usa or #linux. A user can be taking part in several channels when connected to an IRC network. For a long time the only IRC network has been EFnet (Eris-Free Network, named after its server eris.berkeley.edu), founded in 1990. The other three major IRC networks are Undernet (1993), DALnet (1994) and IRCnet, which split off EFnet in June 1996. All persons connecting to an IRC network at one time create that IRC network’s user space. People are constantly signing on and off, the total number of users ever been to a specific IRC network could be called social space of that IRC network. It is obvious, that the IRC network’s social space by far outnumbers its user space. -
Nessus 8.11 User Guide
Nessus 8.11.x User Guide Last Updated: October 29, 2020 Table of Contents Welcome to Nessus 8.11.x 13 Get Started with Nessus 16 Navigate Nessus 18 System Requirements 19 Hardware Requirements 20 Software Requirements 23 Licensing Requirements 26 Deployment Considerations 27 Host-Based Firewalls 28 IPv6 Support 29 Virtual Machines 30 Antivirus Software 31 Security Warnings 32 Manage SSL Certificates 33 Custom SSL Certificates 34 SSL Client Certificate Authentication 35 Create a New Custom CA and Server Certificate 36 Upload a Custom CA Certificate 38 Add a Root CA 39 Create Nessus SSL Certificates for Login 40 Enable Connections with Smart Card or CAC Card 43 Connect with Certificate or Card Enabled Browser 44 Copyright © 2020 Tenable, Inc. All rights reserved. Tenable, Tenable.io, Tenable Network Security, Nessus, SecurityCenter, SecurityCenter Continuous View and Log Correlation Engine are registered trade- marks of Tenable,Inc. Tenable.sc, Tenable.ot, Lumin, Indegy, Assure, and The Cyber Exposure Company are trademarks of Tenable, Inc. All other products or services are trademarks of their respective Install Nessus and Nessus Agents 46 Download Nessus 47 Install Nessus 49 Install Nessus on Linux 50 Install Nessus on Windows 52 Install Nessus on Mac OS X 54 Install Nessus Agents 56 Retrieve the Linking Key 57 Install a Nessus Agent on Linux 58 Install a Nessus Agent on Windows 62 Install a Nessus Agent on Mac OS X 66 Link an Agent to Nessus Manager 70 Upgrade Nessus and Nessus Agents 73 Upgrade Nessus 74 Upgrade from Evaluation 75 Update Nessus Software 76 Upgrade Nessus on Linux 79 Upgrade Nessus on Windows 80 Upgrade Nessus on Mac OS X 81 Upgrade a Nessus Agent 82 Downgrade Nessus Software 85 Configure Nessus 86 Install Nessus Essentials, Professional, or Manager 87 Link to Tenable.io 89 Copyright © 2020 Tenable, Inc. -
Nessus 8.3 User Guide
Nessus 8.3.x User Guide Last Updated: September 24, 2021 Table of Contents Welcome to Nessus 8.3.x 12 Get Started with Nessus 15 Navigate Nessus 16 System Requirements 17 Hardware Requirements 18 Software Requirements 22 Customize SELinux Enforcing Mode Policies 25 Licensing Requirements 26 Deployment Considerations 27 Host-Based Firewalls 28 IPv6 Support 29 Virtual Machines 30 Antivirus Software 31 Security Warnings 32 Certificates and Certificate Authorities 33 Custom SSL Server Certificates 35 Create a New Server Certificate and CA Certificate 37 Upload a Custom Server Certificate and CA Certificate 39 Trust a Custom CA 41 Create SSL Client Certificates for Login 43 Nessus Manager Certificates and Nessus Agent 46 Install Nessus 48 Copyright © 2021 Tenable, Inc. All rights reserved. Tenable, Tenable.io, Tenable Network Security, Nessus, SecurityCenter, SecurityCenter Continuous View and Log Correlation Engine are registered trade- marks of Tenable,Inc. Tenable.sc, Tenable.ot, Lumin, Indegy, Assure, and The Cyber Exposure Company are trademarks of Tenable, Inc. All other products or services are trademarks of their respective Download Nessus 49 Install Nessus 51 Install Nessus on Linux 52 Install Nessus on Windows 54 Install Nessus on Mac OS X 56 Install Nessus Agents 58 Retrieve the Linking Key 59 Install a Nessus Agent on Linux 60 Install a Nessus Agent on Windows 64 Install a Nessus Agent on Mac OS X 70 Upgrade Nessus and Nessus Agents 74 Upgrade Nessus 75 Upgrade from Evaluation 76 Upgrade Nessus on Linux 77 Upgrade Nessus on Windows 78 Upgrade Nessus on Mac OS X 79 Upgrade a Nessus Agent 80 Configure Nessus 86 Install Nessus Home, Professional, or Manager 87 Link to Tenable.io 88 Link to Industrial Security 89 Link to Nessus Manager 90 Managed by Tenable.sc 92 Manage Activation Code 93 Copyright © 2021 Tenable, Inc. -
Absolute BSD—The Ultimate Guide to Freebsd Table of Contents Absolute BSD—The Ultimate Guide to Freebsd
Absolute BSD—The Ultimate Guide to FreeBSD Table of Contents Absolute BSD—The Ultimate Guide to FreeBSD............................................................................1 Dedication..........................................................................................................................................3 Foreword............................................................................................................................................4 Introduction........................................................................................................................................5 What Is FreeBSD?...................................................................................................................5 How Did FreeBSD Get Here?..................................................................................................5 The BSD License: BSD Goes Public.......................................................................................6 The Birth of Modern FreeBSD.................................................................................................6 FreeBSD Development............................................................................................................7 Committers.........................................................................................................................7 Contributors........................................................................................................................8 Users..................................................................................................................................8 -
Honeydv6 a Low-Interaction Ipv6 Honeypot
HoneydV6 A low-interaction IPv6 honeypot Sven Schindler Potsdam University Institute for Computer Science Operating Systems and Distributed Systems Reykjavík, July 29, 2013 Outline 1 Introduction 2 An IPv6 darknet experiment 3 HoneydV6 - Development and Performance Measurements 4 Conclusion and Future work Sven Schindler (Potsdam University) HoneydV6 Frame 2 of 26 Introduction Outline 1 Introduction 2 An IPv6 darknet experiment 3 HoneydV6 - Development and Performance Measurements 4 Conclusion and Future work Sven Schindler (Potsdam University) HoneydV6 Frame 3 of 26 Introduction Why do we need IPv6 dark- and honeynets? huge IPv6 address space makes brute-force network scanning impossible new scanning approaches in the wild? attacks aiming at IPv6 design weaknesses how to analyse IPv6 related attacks? Sven Schindler (Potsdam University) HoneydV6 Frame 4 of 26 Introduction THC and si6 - IPv6 Attack Toolkits IPv6 attack tools like THC toolkit [3] and si6 [8] available fragment6 (THC) - duplicate fragments fake_router6 (THC) - become the default router rsmurf6 (THC) - remote smurf attack tool dos-new-ip6 (THC) - block new hosts from joining a network scan6 (si6) - intelligent scan approaches Sven Schindler (Potsdam University) HoneydV6 Frame 5 of 26 An IPv6 darknet experiment Outline 1 Introduction 2 An IPv6 darknet experiment 3 HoneydV6 - Development and Performance Measurements 4 Conclusion and Future work Sven Schindler (Potsdam University) HoneydV6 Frame 6 of 26 An IPv6 darknet experiment Prior darknet experiments Why another IPv6 Darknet -
Ipsec Overhead in Wireline and Wireless Networks for Web and Email Applications
IPSec Overhead in Wireline and Wireless Networks for Web and Email Applications George C. Hadjichristofi Nathaniel J. Davis, IV Scott F. Midkiff Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia 2406 1 USA Abstract inserted in a system model to calculate the overall This paper focuses on characterizing the overhead of speedup when compression was used in different types of IP Security (IPSec)for email and web applications using networks. The research did not involve deploying test a set of test bed configurations. The different beds for “live” experimental measurements. confligurations are implemented using both wireline and Chappell, et al. did additional work [2]. The purpose wireless netwrk links. ne testing considers different of their research was to determine the suitability of IPSec combinations of authentication algorithms and for a Multiple Level Security environment. The research authentication protocols. Authentication algorithms used an experimental version of IPSec that was not include Hashed Message Authentication Code-Message optimized for performance. A simple IPSec wireline test Digest 5 (HMAC-MD5) and Hashed Message bed was deployed and various measurements were made. Authentication Code-Secure Hash Algorithm 1 (HMAC- The research did not investigate the overhead of using SHAl). Authentication protocols include Encapsulating authentication and encryption and the IPSec Security Payload (ESP) and Authentication Header (AH) implementation used only DES for confidentiality. protocols. Triple Digital Enclyption Standard (3DEq is The results presented in this paper are derived from used for encryption. Overhead is examined for scenarios actual measurements taken on wired and wireless test using no enclyption and no authentication, authentication beds and provide an expanded testing environment when and no encryption, and authentication and enclyption. -
TASK \ OS TASK \ OS TASK \ OS Show/Set EEPROM
TASK \ OS OS notes administrative GUI managing users TASK \ OS list hardware configuration unique id useful for licensing show/set EEPROM/NVRAM values add device without reboot remove device tape device stdin/ stdout/ stderr X kvm config TASK \ OS read a disk label whole disk in partition label a disk partition a disk TASK \ OS kernel show/set kernel parameters limit physical memory loaded kernel modules load module unload module make disk bootable startup scripts start/ stop/ config services shutdown (& power off if possible) run levels 1 *=normal states for more detail see www.phildev.net/runlevels.html show runlevel 1 time zone info check swap space bind process to CPU TASK \ OS "normal" filesystem volume-based filesystem file system description volume manipulation create filesystem create non-0-length empty file mount CDROM eject CDROM create/mount ISO image ACL management Fibre Channel / SAN TASK \ OS NFS share definitions NFS share command NFS information name resolution order show network interface info change IP start DHCP client ping one packet sniff network route definitions telnetd, ftpd banner set date/time (from net: ntp or other) TASK \ OS auditing encrypted passwords in min password length allow/deny root logins firewall config TASK \ OS show installed software file is in which package add software precompiled binaries of GPLware and freeware C compiler show patch level and/or patches patch tool configure/show runtime linking fortran-2000.com/ ArnaudRecipes/ sharedlib.html link library path tracing utility define user defaults csh global .login default syslog and messages system error reporting tool performance monitoring match process to file or port X pop-up Wikipedia FAQs (see also faqs.org) mailing list mailing list archives man pages www.freebsd.org/ cgi/man.cgi newsgroup(s) and forums groups.google user groups magazines vendor home page vendor docs and patches (see also man pages) vendor phone (US) wikis FreeBSD Derived from 4.4BSD-Lite and 386BSD. -
Delegating Network Security with More Information
Delegating Network Security with More Information Jad Naous Ryan Stutsman Stanford University Stanford University California, USA California, USA [email protected] David Mazières Nick McKeown Nickolai Zeldovich Stanford University Stanford University MIT CSAIL California, USA California, USA Massachusetts, USA [email protected] [email protected] ABSTRACT network has become more centralized, enabling an admin- Network security is gravitating towards more centralized istrator to configure a consistent security policy at a single control. Strong centralization places a heavy burden on the location and have it enforced across various devices. Recent administrator who has to manage complex security policies proposals take centralization even further, proposing that al- and be able to adapt to users’ requests. To be able to cope, most all network features be pulled out of the datapath into the administrator needs to delegate some control back to a central controller [6, 5, 8, 10, 1], giving the administrator end-hosts and users, a capability that is missing in today’s direct control over routing, mobility, and access control. We networks. Delegation makes administrators less of a bottle- expect this trend to continue. neck when policy needs to be modified and allows network While there are many advantages to centralizing the con- administration to follow organizational lines. To enable del- trol of enterprise networks, such centralization places a heavy egation, we propose ident++—a simple protocol to request burden on the administrator. She needs to manage an in- additional information from end-hosts and networks on the creasingly complex set of rules, respond to user requests, path of a flow.