72273 2 En Bookfrontmatter 1..33
Total Page:16
File Type:pdf, Size:1020Kb
Springer Textbooks in Earth Sciences, Geography and Environment The Springer Textbooks series publishes a broad portfolio of textbooks on Earth Sciences, Geography and Environmental Science. Springer textbooks provide comprehensive introductions as well as in-depth knowledge for advanced studies. A clear, reader-friendly layout and features such as end-of-chapter summaries, work examples, exercises, and glossaries help the reader to access the subject. Springer textbooks are essential for students, researchers and applied scientists. More information about this series at http://www.springer.com/series/15201 Jibamitra Ganguly Thermodynamics in Earth and Planetary Sciences Second Edition 123 Jibamitra Ganguly Department of Geosciences University of Arizona Tucson, AZ, USA ISSN 2510-1307 ISSN 2510-1315 (electronic) Springer Textbooks in Earth Sciences, Geography and Environment ISBN 978-3-030-20878-3 ISBN 978-3-030-20879-0 (eBook) https://doi.org/10.1007/978-3-030-20879-0 1st edition: © Springer-Verlag Berlin Heidelberg 2008 2nd edition: © Springer Nature Switzerland AG 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland A theory is the more impressive the greater the simplicity of its premises, the more different kind of things it relates, and the more extended its area of applicability. Therefore the deep impression that classical thermodynamics made upon me. It is the only physical theory of universal content which I am convinced will never be overthrown, within the framework of applicability of its basic concepts. Albert Einstein Dedicated to the Pioneers who led the way and Students, Colleagues and Mentors who helped me along the way Preface to the Second Edition The first edition of the book was written when I had to carry a full load of teaching, maintain well-funded research programs and carry out many other activities that are typically expected of someone holding an academic position in USA. There was hardly any free time to write a book of this nature, and conse- quently writing of the book became a stressful undertaking. This, however, is a common situation with active scientists who write books. After my retirement a few years ago that allowed me considerable freedom of how I use my time, I felt that I should work on the book again for a second edition that would give me the opportunity to correct many typographical errors that I have spotted in the meanwhile (these were corrected in the Chinese translation that was published in 2015), improve the clarity of presentation in several places and add new materials. In the last category, I have added a new chapter on Statistical Thermodynamics and also significant amount of new materials in many of the existing chapters; most of these additions are in Chaps. 4 – 8, 10, 12, 13 and Appendices A and C. Additionally, there is a new Appendix (D) containing solutions of selected prob- lems that are marked by asterisks in the chapters. Answers and hints for solutions have been provided for the problems for which solutions are not included in this Appendix. As in the first edition, I have inserted the problems into appropriate places within the text that the problems relate to instead of following the usual practice of collecting them at the end of each chapter. I am thankful to Dr. Manga Venkateswara Rao for helpful discussions and reviews of selected chapters. In the Introduction of their ground breaking work on paleothermometry using Statistical Thermodynamics in 1951, Harold Urey and co-workers remarked: Geologists have drawn many conclusions from the purely qualitative evi- dence of geological studies in regard to the past climatic conditions on the earth. These deductions are based upon a great variety of evidence, and the ability of the geologists to deduce as much as they have in regard to these conditions excites the wonder and admiration of all the uninitiated who examine their work even casually. Although this statement is about the geologists’ early contribution to paleocli- mate studies, it also applies, at least in my judgment, to geologists’, and in a broader ix x Preface to the Second Edition sense Earth scientists’ contributions to a variety of large-scale problems. However, as in the paleoclimate studies, one of the most important developments in Geo- logical and related aspects of Planetary sciences has been the integration of quantitative analysis using thermodynamics with the “qualitative evidence” that the Geologists are used to dealing with and their ability to extract major new insights from that to address large-scale natural processes. Hopefully, the extent and scope of application of thermodynamics to the quantitative analysis of complex natural processes would continue to grow. Tucson, AZ, USA Jibamitra Ganguly March 2019 Preface to the First Edition When the knowledge is weak and the situation is complicated, thermodynamic relations are really the most powerful Richard Feynman Thermodynamics has played a major role in improving our understanding of natural processes and would continue to do so for the foreseeable future. In fact, a course in thermodynamics has now become a part of Geosciences curriculum in many Institutions despite the fact that a formal thermodynamics course is taught in every other department of physical sciences, and also in departments of Chemical Engineering, Materials Sciences, and Biological Sciences. The reason thermody- namics is taught in a variety of departments, probably more so than any other subject, is that its principles have wide ranging applications but the teaching of thermodynamics also needs special focus depending on the problems in a par- ticular field. There are numerous books in thermodynamics that have usually been written with particular focus to the problems in the traditional fields of Chemistry, Physics, and Engineering. In recent years, several books have also been written that emphasized applications to Geological problems. Thus, one may wonder why there is yet another book in thermodynamics. The primary focus of the books that have been written with Geosciences audience in mind has been chemical thermody- namics or Geochemical thermodynamics. Along with expositions of fundamental principles of thermodynamics, I have tried to address a wide range of problems relating to geochemistry, petrology, mineralogy, geophysics, and planetary sci- ences. It is not a fully comprehensive effort but is a major attempt to develop a core material that should be of interest to people with different specialties in the Earth and Planetary Sciences. The conditions of the systems in the Earth and Planetary Sciences to which thermodynamics have been applied cover a very large range in pressure-temperature space. For example, the P-T conditions for the processes at the Earth’s surface are 1 bar, 25 °C, whereas those for the processes in the deep interior of the Earth are at pressures of the order of 106 bars and temperatures of the order of 103 °C. The pressures for processes in the solar nebula are 10−3–10−4 bars. The extreme xi xii Preface to the First Edition range of conditions encompassed by natural processes requires variety of manipu- lations and approximations that are not readily available in the standard textbooks on thermodynamics. Earth scientists have made significant contributions in these areas that have been overlooked in the standard texts since the expected audience of these texts rarely deal with the conditions that Earth scientists have to. I have tried to highlight the contributions of Earth scientists that have made possible meaningful applications of thermodynamics to natural problems. In order to develop a proper appreciation of thermodynamic laws and thermo- dynamic properties of matter, it is useful to look into their physical picture by relating them to the microscopic descriptions. Furthermore, in geological problems, it is often necessary to extrapolate thermodynamic properties of matter way beyond the conditions at which these have been measured, and also to be able to estimate thermodynamic properties because of lack of adequate data to address a specific problem at hand. These efforts require an understanding of the physical or micro- scopic basis of thermodynamic properties.