New Insights Into the Melanophilin (MLPH) Gene Affecting Coat Color Dilution in Rabbits

Total Page:16

File Type:pdf, Size:1020Kb

New Insights Into the Melanophilin (MLPH) Gene Affecting Coat Color Dilution in Rabbits G C A T T A C G G C A T genes Article New Insights into the Melanophilin (MLPH) Gene Affecting Coat Color Dilution in Rabbits Julie Demars 1,*, Nathalie Iannuccelli 1, Valerio Joe Utzeri 2, Gerard Auvinet 3, Juliette Riquet 1, Luca Fontanesi 2 and Daniel Allain 1 1 GenPhySE, INRA Animal Genetics, Toulouse Veterinary School (ENVT), Université de Toulouse, 31326 Castanet Tolosan, France; [email protected] (N.I.); [email protected] (J.R.); [email protected] (D.A.) 2 Department of Agricultural and Food Sciences (DISTAL), Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy; [email protected] (V.J.U.); [email protected] (L.F.) 3 GenESI, INRA le Magneraud, 17700 Surgères, France; [email protected] * Correspondence: [email protected]; Tel.: +33-5-61-28-51-15 Received: 29 June 2018; Accepted: 13 August 2018; Published: 23 August 2018 Abstract: Coat color dilution corresponds to a specific pigmentation phenotype that leads to a dilution of wild type pigments. It affects both eumelanin and pheomelanin containing melanosomes. The mode of inheritance of the dilution phenotype is autosomal recessive. Candidate gene approaches focused on the melanophilin (MLPH) gene highlighted two variants associated with the dilution phenotype in rabbits: The c.111-5C>A variant that is located in an acceptor splice site or the c.585delG variant, a frameshift mutation. On the transcript level, the skipping of two exons has been reported as the molecular mechanism responsible for the coat color dilution. To clarify, which of the two variants represents the causal variant, (i) we analyzed their allelic segregation by genotyping Castor and Chinchilla populations, and (ii) we evaluated their functional effects on the stability of MLPH transcripts in skin samples of animals with diluted or wild type coat color. Firstly, we showed that the c.585delG variant showed perfect association with the dilution phenotype in contrast to the intronic c.111-5C>A variant. Secondly, we identified three different MLPH isoforms including the wild type isoform, the exon-skipping isoform and a retained intron isoform. Thirdly, we observed a drastic and significant decrease of MLPH transcript levels in rabbits with a coat color dilution (p-values ranging from 10−03 to 10−06). Together, our results bring new insights into the coat color dilution trait. Keywords: coat color dilution; melanophilin; rabbit 1. Introduction Different coat colors in the European rabbit (Oryctolagus cuniculus) have been selected throughout domestication and are nowadays fixed in specific breeds. Among the various phenotypic traits, coat color dilution corresponds to an altered distribution of eumelanin and pheomelanin pigments in skin and hair [1]. A similar coat color dilution phenotype has been observed in other mammals such as mice. Mutations within proteins encoding the melanosome transport complex were described in the myosin VA (Myo5a)[2], Ras-related protein (Rab27a)[3] and melanophilin (Mlph)[4] genes. In humans, patients suffering from Griscelli Syndrome (GS) exhibit a pigment dilution in their hair and skin, which, depending on the specific genetic variant, may or may not be accompanied by other important symptoms. Interestingly, mutations within MYO5A [5], RAB27A [6] and MLPH [7,8] are respectively responsible for GS1 (OMIM #214450), GS2 (OMIM #607624) and GS3 (OMIM #609227). Only GS3 is characterized by hypomelanosis with no immunologic or neurologic manifestations. Genes 2018, 9, 430; doi:10.3390/genes9090430 www.mdpi.com/journal/genes Genes 2018, 9, x FOR PEER REVIEW 2 of 12 #609227). Only GS3 is characterized by hypomelanosis with no immunologic or neurologic Genes 2018, 9, 430 2 of 12 manifestations. Candidate gene approaches focused on these specific genes were performed in several species presentingCandidate a dilution gene‐ approacheslike coat color focused phenotype. on these The specific mode of genes inheritance were performed of the dilution in several phenotype species is presentingautosomal recessive a dilution-like [1]. Mutations coat color within phenotype. the MLPH The mode gene ofwere inheritance identified of in the mice dilution [4], cat phenotype [9] (OMIA is 000206autosomal‐9685), recessive dog [10–12] [1]. Mutations (OMIA 000031 within‐9615), the MLPH chickengene [13] were (OMIA identified 001445 in‐9031), mice [quail4], cat [14] [9] (OMIA 001445000206-9685),‐93934), dog American [10–12 ]mink (OMIA [15] 000031-9615), (OMIA 001438 chicken‐452646) [13 and] (OMIA cattle 001445-9031), [16] (OMIA 001438 quail‐ [452646).14] (OMIA In rabbits,001445-93934), although American variants minkhave also [15] been (OMIA highlighted 001438-452646) within the and MLPH cattle gene, [16] (OMIA two published 001438-452646). studies haveIn rabbits, suggested although different variants variants have also as the been genuine highlighted causal within mutation the MLPH [17,18].gene, An two alternatively published spliced studies MLPHhave suggested transcript different isoform corresponding variants as the to genuine two‐exon causal skipping mutation was suggested [17,18]. An as alternativelythe causal molecular spliced mechanismMLPH transcript for the isoform coat color corresponding phenotype to [17]. two-exon The c.111 skipping‐5C>A was variant, suggested located as within the causal intron molecular 2 in an acceptormechanism site for for the splicing, coat color was phenotypereported as [ 17the]. most The c.111-5C>A likely variant variant, leading located to this within exon skipping intron 2 in [17]. an Thisacceptor skipping site for of splicing,exons 3 and was 4 reported caused a asframeshift the most leading likely variant to a change leading of two to this amino exon acids skipping followed [17]. Thisby a skippingpremature of exonsstop codon 3 and 4[17]. caused A second a frameshift variant, leading c.585delG, to a change corresponding of two amino to a acids 1‐bp followeddeletion byin exona premature 6 of the stop MLPH codon gene [17 has]. A also second been variant, identified c.585delG, in various corresponding breeds with to a a 1-bpdilution deletion of their in exoncoat [17,18].6 of the ThisMLPH variantgene also has alsoled to been a frameshift identified and in various an altered breeds amino with acid a dilution sequence of with their a coat premature [17,18]. Thisstop codon. variant Both also variants led to a were frameshift identified and in an the altered first study amino and acid are associated sequence with coat a premature color dilution stop incodon. several Both breeds variants (Netherland were identified Dwarf, in Loh, the firstLionhead study Dwarf and are and associated Blue Vienna) with coat [17]. color The dilutionauthors suggestedin several a breeds higher (Netherland relevance of Dwarf,the c.111 Loh,‐5C>A Lionhead variant although Dwarf and an effect Blue Vienna)of the c.585delG [17]. The variant authors on thesuggested dilution a phenotype higher relevance was suggested of the c.111-5C>A for individuals variant who although were not an homozygous effect of the c.585delGfor mutated variant allele aton c.111 the dilution‐5C>A [17]. phenotype However, was only suggested the c.585delG for individuals variant was who highlighted were not and homozygous analyzed by for Fontanesi mutated etallele al. [18]. at c.111-5C>A An association [17]. signal However, with onlythe coat the color c.585delG dilution variant was wasobtained highlighted in various and breeds analyzed (n = by7) includingFontanesi etBlue al. Vienna [18]. An and association Castor Rex signal [18]. with the coat color dilution was obtained in various breeds (n = 7)To including better understand Blue Vienna the and dilution Castor phenotype Rex [18]. in rabbits and to likely discriminate, which of the two previouslyTo better understand reported variants the dilution is the phenotype true causal in variant, rabbits we and analyzed to likely discriminate,their segregation which with of the dilutiontwo previously phenotype reported in Castor variants and isChinchilla the true causalbreeds variant,already weknown analyzed to have their the segregation trait of interest with [18]. the Oncedilution highlighting phenotype the in genetic Castor implication and Chinchilla of the breeds c.585delG already variant, known we to evaluated have the its trait impact of interest on MLPH [18]. transcriptsOnce highlighting in order the to genetic understand implication the molecular of the c.585delG mechanisms variant, involved we evaluated in coat its color impact dilution on MLPH in rabbits.transcripts in order to understand the molecular mechanisms involved in coat color dilution in rabbits. 2. Materials and Methods 2.1. Animals 2.1. Animals The coat coat color color dilution dilution phenotype phenotype was was observed observed in Castor in Castor and andChinchilla Chinchilla breeds breeds (Figure (Figure 1). Both1). breedsBoth breeds are selected are selected for fur for production; fur production; each each includes includes two two lines. lines. The The wild wild type type (wt) (wt) Castor Castor line line has has a normala normal black black-brown‐brown coat coat color color with with a a yellow yellow agouti agouti band. band. The The diluted diluted Castor Castor line line was was derived derived from the wt Castor lineline byby selectingselecting thethe blueblue coatcoat color color phenotype. phenotype. Similarly, Similarly, the the wt wt Chinchilla Chinchilla line line carries carries a anormal normal black-brown black‐brown coat coat color color with with the Ch the allele Ch atallele the Cat locus the C and locus the otherand linethe (dilutedother line Chinchilla) (diluted wasChinchilla) derived was from derived wt Chinchilla from wt with Chinchilla the ash coatwith color the ash phenotype. coat color Nowadays, phenotype. the Nowadays, four lines represent the four linesfour distinctrepresent populations four distinct since populations they are selected since they independently. are selected independently. Figure 1. Characterization of the dilution phenotype in Castor and Chinchilla breeds. The rabbits with Figure 1. Characterization of the dilution phenotype in Castor and Chinchilla breeds.
Recommended publications
  • A Network of Bhlhzip Transcription Factors in Melanoma: Interactions of MITF, TFEB and TFE3
    A network of bHLHZip transcription factors in melanoma: Interactions of MITF, TFEB and TFE3 Josué A. Ballesteros Álvarez Thesis for the degree of Philosophiae Doctor January 2019 Net bHLHZip umritunarþátta í sortuæxlum: Samstarf milli MITF, TFEB og TFE3 Josué A. Ballesteros Álvarez Ritgerð til doktorsgráðu Leiðbeinandi/leiðbeinendur: Eiríkur Steingrímsson Doktorsnefnd: Margrét H. Ögmundsdóttir Þórarinn Guðjónsson Jórunn E. Eyfjörð Lars Rönnstrand Janúar 2019 Thesis for a doctoral degree at tHe University of Iceland. All rigHts reserved. No Part of tHis Publication may be reProduced in any form witHout tHe Prior permission of the copyright holder. © Josue A. Ballesteros Álvarez. 2019 ISBN 978-9935-9421-4-2 Printing by HáskólaPrent Reykjavik, Iceland 2019 Ágrip StjórnPróteinin MITF , TFEB, TFE3 og TFEC (stundum nefnd MiT-TFE þættirnir) tilheyra bHLHZip fjölskyldu umritunarþátta sem bindast DNA og stjórna tjáningu gena. MITF er mikilvægt fyrir myndun og starfsemi litfruma en ættingjar þess, TFEB og TFE3, stjórna myndun og starfsemi lysósóma og sjálfsáti. Sjálfsát er líffræðilegt ferli sem gegnir mikilvægu hlutverki í starfsemi fruma en getur einnig haft áHrif á myndun og meðHöndlun sjúkdóma. Í verkefni þessu var samstarf MITF, TFE3 og TFEB Próteinanna skoðað í sortuæxlisfrumum og hvaða áhrif þau Hafa á tjáningu hvers annars. Eins og MITF eru TFEB og TFE3 genin tjáð í sortuæxlisfrumum og sortuæxlum; TFEC er ekki tjáð í þessum frumum og var því ekki skoðað í þessu verkefni. Með notkun sérvirkra hindra var sýnt að boðleiðir hafa áhrif á staðsetningu próteinanna þriggja í sortuæxlisfrumum. Umritunarþættir þessir geta bundist skyldum DNA-bindisetum og haft áhrif á tjáningu gena sem eru nauðsynleg fyrir myndun bæði lýsósóma og melanósóma.
    [Show full text]
  • Article Zebrafish Melanophilin Facilitates Melanosome Dispersion
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 17, 1721–1734, October 23, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.09.028 Article Zebrafish Melanophilin Facilitates Melanosome Dispersion by Regulating Dynein Lavinia Sheets,1 David G. Ransom,1 Eve M. Mellgren,2 accomplish this by either aggregating or dispersing their Stephen L. Johnson,2 and Bruce J. Schnapp1,* membrane-bound pigment granules, called melano- 1Department of Cell and Developmental Biology somes, depending on the level of intracellular cAMP. Al- Oregon Health and Science University though these cells have been used for many years for in- Basic Science Building Room 5365 vestigating intracellular transport regulation [1], it is not 3181 SW Sam Jackson Park Road understood how cAMP regulates the molecular motors Portland, Oregon 97201-3098 responsible for melanosome transport. Here, we have 2Department of Genetics used zebrafish to identify and characterize a gene prod- Washington University School of Medicine uct that regulates melanosome motors downstream of St. Louis, Missouri 63110 cAMP. Melanocyte microtubules are arrayed with their minus ends at the cell center; hence, the minus-end motor cy- Summary toplasmic dynein carries melanosomes inward, leading to aggregation [2, 3], whereas the plus-end motor kine- Background: Fish melanocytes aggregate or disperse sin-2 carries melanosomes outward, leading to disper- their melanosomes in response to the level of intracellu- sion [4]. Melanosomes also interact with myosin V, lar cAMP. The role of cAMP is to regulate both melano- which switches their transport from microtubules to ac- some travel along microtubules and their transfer tin filaments [2, 5, 6].
    [Show full text]
  • Refractory Seizure in a Patient with Griscelli Syndrome: a Unique Case with One Mutation and a Novel Deletion
    Open Access Case Report DOI: 10.7759/cureus.14402 Refractory Seizure in a Patient With Griscelli Syndrome: A Unique Case With One Mutation and a Novel Deletion Juan Fernando Ortiz 1, 2 , Samir Ruxmohan 3 , Ivan Mateo Alzamora 4 , Amrapali Patel 5 , Ahmed Eissa- Garcés 1 1. Neurology, Universidad San Francisco de Quito, Quito, ECU 2. Neurology, Larkin Community Hospital, Miami, USA 3. Neurology, Larkin Community Hospital, Miami, Florida, USA 4. Medicine, Universidad San Francisco de Quito, Quito, ECU 5. Public Health, George Washington University, Washington, USA Corresponding author: Juan Fernando Ortiz, [email protected] Abstract Griscelli syndrome (GS) is a rare syndrome characterized by hypopigmentation, immunodeficiency, and neurological features. The genes Ras-related protein (RAB27A) and Myosin-Va (MYO5A) are involved in this condition's pathogenesis. We present a GS type 1 (GS1) case with developmental delay, hypotonia, and refractory seizures despite multiple medications, which included clobazam, cannabinol, zonisamide, and a ketogenic diet. Lacosamide and levetiracetam were added to the treatment regimen, which decreased the seizures' frequency from 10 per day to five per day. The patient had an MYO5A mutation and, remarkably, a deletion on 18p11.32p11.31. The deletion was previously reported in a patient with refractory seizures and developmental delay. We reviewed all cases of GS that presented with seizures. We reviewed other cases of GS and seizures described in the literature and explored possible seizure mechanisms in GS. Seizure in GS1 seems to be related directly to the MYO5A mutation. The neurological manifestations in GS2 seem to be caused indirectly by the accelerated phase of Hemophagocytic syndrome (HPS), which is characteristic of GS2.
    [Show full text]
  • The Genetics of Intellectual Disability: Whole Exome Sequencing to Find Causative Variants in Severe Cases
    Master’s Project in Medicine No 4362 The Genetics of Intellectual Disability: whole exome sequencing to find causative variants in severe cases Student Winteler Florence Supervisor Prof. Reymond Alexandre, Ph.D. Center for Integrative Genomics, UNIL Co-Supervisor Gueneau Lucie, Ph.D. Center for Integrative Genomics, UNIL Expert Prof. Draganski Bogdan, Dr. méd Département des neurosciences cliniques, CHUV Lausanne, 25.11.2017 Abstract Intellectual disability (ID) affects 1-3% of the population. A genetic origin is estimated to account for about half of the currently undiagnosed cases, and despite recent successes in identifying some of the genes, it has been suggested that hundreds more genes remain to be identified. ID can be isolated or part of a more complex clinical picture –indeed other symptoms are often found in patients with severe genetic ID, such as developmental delay, organ malformations or seizures. In this project, we used whole exome sequencing (WES) to analyse the coding regions of the genes (exons) of patients with undiagnosed ID and that of their families. The variants called by our algorithm were then grossly sorted out using criteria such as frequency in the general population and predicted pathogenicity. A second round of selection was made by looking at the relevant literature about the function of the underlying genes and pathways involved. The selected variants were then Sanger-sequenced for confirmation. This strategy allowed us to find the causative variant and give a diagnosis to the first family we analysed, as the patient was carrying a mutation in the Methyl-CpG binding protein 2 gene (MECP2), already known to cause Rett syndrome.
    [Show full text]
  • GS3) Or a MYO5A F-Exon Deletion (GS1
    Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1) Gaël Ménasché, Chen Hsuan Ho, Ozden Sanal, Jerome Feldmann, Ilhan Tezcan, Fügen Ersoy, Anne Houdusse, Alain Fischer, Geneviève de Saint Basile To cite this version: Gaël Ménasché, Chen Hsuan Ho, Ozden Sanal, Jerome Feldmann, Ilhan Tezcan, et al.. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F- exon deletion (GS1). Journal of Clinical Investigation, American Society for Clinical Investigation, 2003, 112 (3), pp.450-456. 10.1172/JCI18264. inserm-02440362 HAL Id: inserm-02440362 https://www.hal.inserm.fr/inserm-02440362 Submitted on 31 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1) Gaël Ménasché,1 Chen Hsuan Ho,1 Ozden Sanal,2 Jérôme Feldmann,1 Ilhan Tezcan,2 Fügen Ersoy,2 Anne Houdusse,3 Alain Fischer,1 and Geneviève de Saint Basile1 1Unité
    [Show full text]
  • Membrane Trafficking in Health and Disease Rebecca Yarwood*, John Hellicar*, Philip G
    © 2020. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2020) 13, dmm043448. doi:10.1242/dmm.043448 AT A GLANCE Membrane trafficking in health and disease Rebecca Yarwood*, John Hellicar*, Philip G. Woodman‡ and Martin Lowe‡ ABSTRACT KEY WORDS: Disease, Endocytic pathway, Genetic disorder, Membrane traffic, Secretory pathway, Vesicle Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with Introduction their environment. In this At a Glance article and accompanying Membrane trafficking pathways are essential for cells to maintain poster, we outline the major cellular trafficking pathways and discuss critical functions, to grow, and to accommodate to their chemical how defects in the function of the molecular machinery that mediates and physical environment. Membrane flux through these pathways this transport lead to various diseases in humans. We also briefly is high, and in specialised cells in some tissues can be enormous. discuss possible therapeutic approaches that may be used in the For example, pancreatic acinar cells synthesise and secrete amylase, future treatment of trafficking-based disorders. one of the many enzymes they produce, at a rate of approximately 0.5% of cellular protein mass per hour (Allfrey et al., 1953), while in Schwann cells, the rate of membrane protein export must correlate School of Biological Sciences, Faculty of Biology, Medicine and Health, with the several thousand-fold expansion of the cell surface that University of Manchester, Manchester, M13 9PT, UK. occurs during myelination (Pereira et al., 2012). The population of *These authors contributed equally to this work cell surface proteins is constantly monitored and modified via the ‡Authors for correspondence ([email protected]; endocytic pathway.
    [Show full text]
  • A Stop-Gain Mutation Within MLPH Is Responsible for the Lilac Dilution Observed in Jacob Sheep
    G C A T T A C G G C A T genes Communication A Stop-Gain Mutation within MLPH Is Responsible for the Lilac Dilution Observed in Jacob Sheep Christian J. Posbergh 1,* , Elizabeth A. Staiger 1,2 and Heather J. Huson 1,* 1 Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; [email protected] 2 Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA * Correspondence: [email protected] (C.J.P.); [email protected] (H.J.H.) Received: 7 May 2020; Accepted: 2 June 2020; Published: 4 June 2020 Abstract: A coat color dilution, called lilac, was observed within the Jacob sheep breed. This dilution results in sheep appearing gray, where black would normally occur. Pedigree analysis suggested an autosomal recessive inheritance. Whole-genome sequencing of a dilute case, a known carrier, and sixteen non-dilute sheep was used to identify the molecular variant responsible for the coat color change. Through investigation of the genes MLPH, MYO5A, and RAB27A, we discovered a nonsynonymous mutation within MLPH, which appeared to match the reported autosomal recessive nature of the lilac dilution. This mutation (NC_019458.2:g.3451931C>A) results in a premature stop codon being introduced early in the protein (NP_001139743.1:p.Glu14*), likely losing its function. Validation testing of additional lilac Jacob sheep and known carriers, unrelated to the original case, showed a complete concordance between the mutation and the dilution. This stop-gain mutation is likely the causative mutation for dilution within Jacob sheep. Keywords: Ovis aries; coat color; whole-genome sequencing; genomics 1.
    [Show full text]
  • Nine Linked Snps Found in Goat Melanophilin (Mlph) Gene
    Journal of Bioinformatics and Sequence Analysis Vol. 2(6), pp. 85-90, December 2010 Available online at http://www.academicjournals.org/JBSA ISSN 2141-2464 ©2010 Academic Journals Full length Research Paper Nine linked SNPs found in goat melanophilin (mlph) gene Xiang-Long Li*, Fu-Jun Feng, Rong-Yan Zhou, Lan-Hui Li, Hui-qin Zheng and Gui-ru Zheng College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China. Accepted 26 August, 2010 Melanophilin (mlph) gene was characterized as the candidate gene for dilute coat color in human, mice and dog, but little is known in goat. Nine linked SNPs were found in goat mlph gene by sequencing a total of 108 individuals from 5 goat populations. No homozygous mutation of the linked SNPs was detected, so we made a hypothesis that the mutation allele might be or might be linked with a recessive lethal gene. In addition, the nine mutational sites as well as a 205 bp coding region in the sequenced segment were compared with homologous sites or region from other species. Result showed that the overall mean distance (p-distance model) and Std. Err are 0.35 and 0.02 among goat, sheep and other eight mammals for the 205 bp coding region. Phylogenetic analysis showed that the codon used in primates may be more similar to that in bovid rather than in rodent animals. Key words: Melanophilin, goat, coding SNPs, linkage. INTRODUCTION Melanophilin, together with myosin Va and Rab27A in al., 2005; Philipp et al., 2005; Drogemuller et al., 2007). No mammalian, was characterized to form a tripartite protein paper was published on mlph gene for ruminant.
    [Show full text]
  • Myosin Va's Adaptor Protein Melanophilin Enforces Track Selection on the Microtubule and Actin Networks in Vitro
    Myosin Va’s adaptor protein melanophilin enforces track selection on the microtubule and actin networks in vitro Angela Oberhofera, Peter Spielera, Yuliya Rosenfelda, Willi L. Steppa, Augustine Cleetusa, Alistair N. Humeb, Felix Mueller-Planitzc,1, and Zeynep Öktena,d,1 aPhysik Department E22, Technische Universität München, D-85748 Garching, Germany; bSchool of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom; cBioMedizinisches Centrum, Molecular Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; and dMunich Center for Integrated Protein Science, D-81377 Munich, Germany Edited by James A. Spudich, Stanford University School of Medicine, Stanford, CA, and approved May 8, 2017 (received for review November 29, 2016) Pigment organelles, or melanosomes, are transported by kinesin, Previous work on melanocytes demonstrated that melanosomes dynein, and myosin motors. As such, melanosome transport is an move on both the microtubule and actin networks (5–7). How- excellent model system to study the functional relationship between ever, not much is known about the mechanism of microtubule- the microtubule- and actin-based transport systems. In mammalian based transport in melanocytes, including the contributions of the melanocytes, it is well known that the Rab27a/melanophilin/myosin microtubule-associated motors to the melanosome transport (5, 6, Va complex mediates actin-based transport in vivo. However, 8–10). In contrast, the actin-based transport of melanosomes has pathways that regulate the overall directionality of melanosomes been characterized in greater detail. Actin-based transport is on the actin/microtubule networks have not yet been delineated. accomplished by a tripartite complex consisting of the Rab27a, Here, we investigated the role of PKA-dependent phosphorylation melanophilin (Mlph), and myosin Va (MyoVa) subunits.
    [Show full text]
  • Zebrafish Melanophilin Facilitates Melanosome Dispersion
    Current Biology 17, 1721–1734, October 23, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.09.028 Article Zebrafish Melanophilin Facilitates Melanosome Dispersion by Regulating Dynein Lavinia Sheets,1 David G. Ransom,1 Eve M. Mellgren,2 accomplish this by either aggregating or dispersing their Stephen L. Johnson,2 and Bruce J. Schnapp1,* membrane-bound pigment granules, called melano- 1Department of Cell and Developmental Biology somes, depending on the level of intracellular cAMP. Al- Oregon Health and Science University though these cells have been used for many years for in- Basic Science Building Room 5365 vestigating intracellular transport regulation [1], it is not 3181 SW Sam Jackson Park Road understood how cAMP regulates the molecular motors Portland, Oregon 97201-3098 responsible for melanosome transport. Here, we have 2Department of Genetics used zebrafish to identify and characterize a gene prod- Washington University School of Medicine uct that regulates melanosome motors downstream of St. Louis, Missouri 63110 cAMP. Melanocyte microtubules are arrayed with their minus ends at the cell center; hence, the minus-end motor cy- Summary toplasmic dynein carries melanosomes inward, leading to aggregation [2, 3], whereas the plus-end motor kine- Background: Fish melanocytes aggregate or disperse sin-2 carries melanosomes outward, leading to disper- their melanosomes in response to the level of intracellu- sion [4]. Melanosomes also interact with myosin V, lar cAMP. The role of cAMP is to regulate both melano- which switches their transport from microtubules to ac- some travel along microtubules and their transfer tin filaments [2, 5, 6]. If the transfer to actin is inhibited in between microtubules and actin.
    [Show full text]
  • High Functioning Autism with Missense
    International Journal of Molecular Sciences Article High Functioning Autism with Missense Mutations in Synaptotagmin-Like Protein 4 (SYTL4) and Transmembrane Protein 187 (TMEM187) Genes: SYTL4- Protein Modeling, Protein-Protein Interaction, Expression Profiling and MicroRNA Studies Syed K. Rafi 1,* , Alberto Fernández-Jaén 2 , Sara Álvarez 3, Owen W. Nadeau 4 and Merlin G. Butler 1,* 1 Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA 2 Department of Pediatric Neurology, Hospital Universitario Quirón, 28223 Madrid, Spain 3 Genomics and Medicine, NIM Genetics, 28108 Madrid, Spain 4 Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA * Correspondence: rafi[email protected] (S.K.R.); [email protected] (M.G.B.); Tel.: +816-787-4366 (S.K.R.); +913-588-1800 (M.G.B.) Received: 25 March 2019; Accepted: 17 June 2019; Published: 9 July 2019 Abstract: We describe a 7-year-old male with high functioning autism spectrum disorder (ASD) and maternally-inherited rare missense variant of Synaptotagmin-like protein 4 (SYTL4) gene (Xq22.1; c.835C>T; p.Arg279Cys) and an unknown missense variant of Transmembrane protein 187 (TMEM187) gene (Xq28; c.708G>T; p. Gln236His). Multiple in-silico predictions described in our study indicate a potentially damaging status for both X-linked genes. Analysis of predicted atomic threading models of the mutant and the native SYTL4 proteins suggest a potential structural change induced by the R279C variant which eliminates the stabilizing Arg279-Asp60 salt bridge in the N-terminal half of the SYTL4, affecting the functionality of the protein’s critical RAB-Binding Domain.
    [Show full text]
  • 1. General Function
    Rab27 Yanan Hou, Xuequn Chen, John A Williams Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 Email: [email protected] Version 1.0, August 26, 2010 [DOI: 10.3998/panc.2010.14] Gene Symbols: Rab27A, Rab27B 1. General Function Rab proteins are monomeric Ras-like small Rab proteins require prenylation to properly exert GTPases and constitute the largest family of the their function. Rab27 proteins bear Cys-X-Cys at known membrane trafficking proteins. Rabs act as the C terminal, geranylgeranyl residues can be molecular switches cycling between GTP-bound attached to the two cysteines by Rab active and GDP-bound inactive conformations (1, geranylgeranyl transferase (RGGT), also called 2). Among the Rab proteins, Rab27 proteins, along type II geranylgeranyl transferase (GGT II) (6). The with Rab3 and Rab26, play important roles in newly synthesized Rab proteins are first recognized regulation of various regulated secretion events (3). and bound by Rab escort protein (REP) and then There are two isoforms of Rab27, Rab27A and are presented to RGGT for the posttranslational Rab27B, which were originally cloned from human modification (7). In Figure 1, the REP and RGGT melanoma cells, melanocytes and platelet cytosol recognition motifs of human Rab27A and 27B were (4, 5). Human Rab27A and Rab27B share 66% highlighted. identity at the nucleotide level in their open reading frames (ORFs) and 71% identity in amino acid Rab27A sequence (Figure 1). Variation is greatest in the Mutations in the Rab27A gene cause type 2 carboxyl terminal. It is not clear whether the two Griscelli Syndrome (GS2), a rare, autosomal Rab27 isoforms mediate different actions or are recessive disorder that results in pigmentary expressed in different cell types or both.
    [Show full text]