Molecular Underpinnings of Cytoskeletal Cross-Talk
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tracking Melanosomes Inside a Cell to Study Molecular Motors and Their Interaction
Tracking melanosomes inside a cell to study molecular motors and their interaction Comert Kural*, Anna S. Serpinskaya†, Ying-Hao Chou†, Robert D. Goldman†, Vladimir I. Gelfand†‡, and Paul R. Selvin*§¶ *Center for Biophysics and Computational Biology and §Department of Physics, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and †Department of Cell and Molecular Biology, Northwestern University School of Medicine, Chicago, IL 60611 Communicated by Gordon A. Baym, University of Illinois at Urbana–Champaign, Urbana, IL, January 9, 2007 (received for review June 4, 2006) Cells known as melanophores contain melanosomes, which are membrane organelles filled with melanin, a dark, nonfluorescent pigment. Melanophores aggregate or disperse their melanosomes when the host needs to change its color in response to the environment (e.g., camouflage or social interactions). Melanosome transport in cultured Xenopus melanophores is mediated by my- osin V, heterotrimeric kinesin-2, and cytoplasmic dynein. Here, we describe a technique for tracking individual motors of each type, both individually and in their interaction, with high spatial (Ϸ2 nm) and temporal (Ϸ1 msec) localization accuracy. This method enabled us to observe (i) stepwise movement of kinesin-2 with an average step size of 8 nm; (ii) smoother melanosome transport (with fewer pauses), in the absence of intermediate filaments (IFs); and (iii) motors of actin filaments and microtubules working on the same cargo nearly simultaneously, indicating that a diffusive step is not needed between the two systems of transport. In concert with our previous report, our results also show that dynein-driven retro- grade movement occurs in 8-nm steps. Furthermore, previous studies have shown that melanosomes carried by myosin V move 35 nm in a stepwise fashion in which the step rise-times can be as long as 80 msec. -
A Network of Bhlhzip Transcription Factors in Melanoma: Interactions of MITF, TFEB and TFE3
A network of bHLHZip transcription factors in melanoma: Interactions of MITF, TFEB and TFE3 Josué A. Ballesteros Álvarez Thesis for the degree of Philosophiae Doctor January 2019 Net bHLHZip umritunarþátta í sortuæxlum: Samstarf milli MITF, TFEB og TFE3 Josué A. Ballesteros Álvarez Ritgerð til doktorsgráðu Leiðbeinandi/leiðbeinendur: Eiríkur Steingrímsson Doktorsnefnd: Margrét H. Ögmundsdóttir Þórarinn Guðjónsson Jórunn E. Eyfjörð Lars Rönnstrand Janúar 2019 Thesis for a doctoral degree at tHe University of Iceland. All rigHts reserved. No Part of tHis Publication may be reProduced in any form witHout tHe Prior permission of the copyright holder. © Josue A. Ballesteros Álvarez. 2019 ISBN 978-9935-9421-4-2 Printing by HáskólaPrent Reykjavik, Iceland 2019 Ágrip StjórnPróteinin MITF , TFEB, TFE3 og TFEC (stundum nefnd MiT-TFE þættirnir) tilheyra bHLHZip fjölskyldu umritunarþátta sem bindast DNA og stjórna tjáningu gena. MITF er mikilvægt fyrir myndun og starfsemi litfruma en ættingjar þess, TFEB og TFE3, stjórna myndun og starfsemi lysósóma og sjálfsáti. Sjálfsát er líffræðilegt ferli sem gegnir mikilvægu hlutverki í starfsemi fruma en getur einnig haft áHrif á myndun og meðHöndlun sjúkdóma. Í verkefni þessu var samstarf MITF, TFE3 og TFEB Próteinanna skoðað í sortuæxlisfrumum og hvaða áhrif þau Hafa á tjáningu hvers annars. Eins og MITF eru TFEB og TFE3 genin tjáð í sortuæxlisfrumum og sortuæxlum; TFEC er ekki tjáð í þessum frumum og var því ekki skoðað í þessu verkefni. Með notkun sérvirkra hindra var sýnt að boðleiðir hafa áhrif á staðsetningu próteinanna þriggja í sortuæxlisfrumum. Umritunarþættir þessir geta bundist skyldum DNA-bindisetum og haft áhrif á tjáningu gena sem eru nauðsynleg fyrir myndun bæði lýsósóma og melanósóma. -
Role of Cdc42 in Melanosome Transfer 1443 Approximate Ratio of 1:1 in KGM
Research Article 1441 Filopodia are conduits for melanosome transfer to keratinocytes Glynis Scott, Sonya Leopardi, Stacey Printup and Brian C. Madden Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA Author for correspondence (e-mail: [email protected]) Accepted 4 January 2002 Journal of Cell Science 115, 1441-1451 (2002) © The Company of Biologists Ltd Summary Melanosomes are specialized melanin-synthesizing cultured with keratinocytes induced a highly dendritic organelles critical for photoprotection in the skin. phenotype with extensive contacts between melanocytes Melanosome transfer to keratinocytes, which involves and keratinocytes through filopodia, many of which whole organelle donation to another cell, is a unique contained melanosomes. These results suggest a unique role biological process and is poorly understood. Time-lapse for filopodia in organelle transport and, in combination digital movies and electron microscopy show that filopodia with our previous work showing the presence of SNARE from melanocyte dendrites serve as conduits for proteins and rab3a on melanosomes, suggest a novel model melanosome transfer to keratinocytes. Cdc42, a small system for melanosome transfer to keratinocytes. GTP-binding protein, is known to mediate filopodia formation. Melanosome-enriched fractions isolated from Movies available on-line human melanocytes expressed the Cdc42 effector proteins PAK1 and N-WASP by western blotting. Expression of Key words: Melanosome, Melanocyte, Cdc42, Filopodia, constitutively active Cdc42 (Cdc42V12) in melanocytes co- Keratinocyte Introduction microscopy of cultured cells, which allowed direct Melanosomes are organelles unique to melanocytes that visualization of melanosome movement and modifiers of function in the synthesis of melanin, a complex pigment actin, microtubules and their motor proteins. -
Primary Cilia Membrane Assembly Is Initiated by Rab11 and Transport Protein Particle II (TRAPPII) Complex- Dependent Trafficking of Rabin8 to the Centrosome
Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex- dependent trafficking of Rabin8 to the centrosome Christopher J. Westlakea,1, Lisa M. Bayeb, Maxence V. Nachuryc, Kevin J. Wrighta, Karen E. Ervina, Lilian Phua, Cecile Chalounia, John S. Beckd,e, Donald S. Kirkpatricka, Diane C. Slusarskib, Val C. Sheffieldd, Richard H. Schellera,1, and Peter K. Jacksona,1 aGenentech, South San Francisco, CA 94080; Departments of bBiology and dPediatrics and eHoward Hughes Medical Institute, University of Iowa, Iowa City, IA 52242; and cDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305 Contributed by Richard H. Scheller, December 18, 2010 (sent for review August 19, 2010) Sensory and signaling pathways are exquisitely organized in pri- Rab8 ciliary localization (3, 6) and its presence in Golgi/trans- mary cilia. Bardet-Biedl syndrome (BBS) patients have compromised Golgi membranes (7) suggest that Rab8 could participate in ciliary cilia and signaling. BBS proteins form the BBSome, which binds membrane assembly. Previously we reported Rabin8 at the cen- Rabin8, a guanine nucleotide exchange factor (GEF) activating the trosome (3), a localization that probably is important for Rab8 fi Rab8 GTPase, required for ciliary assembly. We now describe serum- ciliary traf cking. A candidate Rab8 GTPase activating protein regulated upstream vesicular transport events leading to centrosomal (GAP) (XM_037557) has been described and prevents cilia for- Rab8 activation and ciliary membrane formation. Using live micros- mation when overexpressed in cells; moreover, a catalytically in- copyimaging,we showthatupon serum withdrawalRab8 is observed active mutant localized to the cilia (6). An emerging mechanism for organizing vesicular transport to assemble the ciliary membrane in ∼100 min. -
Article Zebrafish Melanophilin Facilitates Melanosome Dispersion
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 17, 1721–1734, October 23, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.09.028 Article Zebrafish Melanophilin Facilitates Melanosome Dispersion by Regulating Dynein Lavinia Sheets,1 David G. Ransom,1 Eve M. Mellgren,2 accomplish this by either aggregating or dispersing their Stephen L. Johnson,2 and Bruce J. Schnapp1,* membrane-bound pigment granules, called melano- 1Department of Cell and Developmental Biology somes, depending on the level of intracellular cAMP. Al- Oregon Health and Science University though these cells have been used for many years for in- Basic Science Building Room 5365 vestigating intracellular transport regulation [1], it is not 3181 SW Sam Jackson Park Road understood how cAMP regulates the molecular motors Portland, Oregon 97201-3098 responsible for melanosome transport. Here, we have 2Department of Genetics used zebrafish to identify and characterize a gene prod- Washington University School of Medicine uct that regulates melanosome motors downstream of St. Louis, Missouri 63110 cAMP. Melanocyte microtubules are arrayed with their minus ends at the cell center; hence, the minus-end motor cy- Summary toplasmic dynein carries melanosomes inward, leading to aggregation [2, 3], whereas the plus-end motor kine- Background: Fish melanocytes aggregate or disperse sin-2 carries melanosomes outward, leading to disper- their melanosomes in response to the level of intracellu- sion [4]. Melanosomes also interact with myosin V, lar cAMP. The role of cAMP is to regulate both melano- which switches their transport from microtubules to ac- some travel along microtubules and their transfer tin filaments [2, 5, 6]. -
Refractory Seizure in a Patient with Griscelli Syndrome: a Unique Case with One Mutation and a Novel Deletion
Open Access Case Report DOI: 10.7759/cureus.14402 Refractory Seizure in a Patient With Griscelli Syndrome: A Unique Case With One Mutation and a Novel Deletion Juan Fernando Ortiz 1, 2 , Samir Ruxmohan 3 , Ivan Mateo Alzamora 4 , Amrapali Patel 5 , Ahmed Eissa- Garcés 1 1. Neurology, Universidad San Francisco de Quito, Quito, ECU 2. Neurology, Larkin Community Hospital, Miami, USA 3. Neurology, Larkin Community Hospital, Miami, Florida, USA 4. Medicine, Universidad San Francisco de Quito, Quito, ECU 5. Public Health, George Washington University, Washington, USA Corresponding author: Juan Fernando Ortiz, [email protected] Abstract Griscelli syndrome (GS) is a rare syndrome characterized by hypopigmentation, immunodeficiency, and neurological features. The genes Ras-related protein (RAB27A) and Myosin-Va (MYO5A) are involved in this condition's pathogenesis. We present a GS type 1 (GS1) case with developmental delay, hypotonia, and refractory seizures despite multiple medications, which included clobazam, cannabinol, zonisamide, and a ketogenic diet. Lacosamide and levetiracetam were added to the treatment regimen, which decreased the seizures' frequency from 10 per day to five per day. The patient had an MYO5A mutation and, remarkably, a deletion on 18p11.32p11.31. The deletion was previously reported in a patient with refractory seizures and developmental delay. We reviewed all cases of GS that presented with seizures. We reviewed other cases of GS and seizures described in the literature and explored possible seizure mechanisms in GS. Seizure in GS1 seems to be related directly to the MYO5A mutation. The neurological manifestations in GS2 seem to be caused indirectly by the accelerated phase of Hemophagocytic syndrome (HPS), which is characteristic of GS2. -
Vimentin Intermediate Filaments in Fish Melanophores
Vimentin intermediate filaments in fish melanophores F. K. GYOEVA Institute of I'mlein Research, Academy of Scienc of the USSR, 142292 I'ushchino, Moscmv Region, USSR E. V. LEONOVA, V. I. RODIONOV and V. I. GELFAND* A. N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscmv State University, 119S99 Moscmv, USSR * Author for correspondence Summary The distribution and chemical composition of as has been found in other cell types. Trans- intermediate filaments in cultured melanophores mission electron microscopy confirmed the pres- of two teleost species - Gymnocorymbus ternetzi ence of intermediate filaments in melanophores. and Pterophyllum scalare - were studied by im- Immunoblotting experiments showed the pres- munofluorescence staining and immunoblotting ence of the intermediate filament protein vimen- techniques. The immunofluorescence staining of tin in melanophore lysates. Therefore, teleost the melanophores with monoclonal and poly- melanophores possess a developed radial system clonal antibodies to the intermediate filament of vimentin intermediate filaments. protein vimentin revealed a system of fibrils radiating from the cell centre. These fibrils were Key words: melanophore, intermediate filaments, resistant to 0-6M-KC1 and nocodazole treatments vimentin. Introduction be involved. Microtubules form a well-developed radial pattern in fish melanophores and their disruption Melanophores are highly specialized cells, containing a inhibits pigment granule movement (Schliwa, 1981; lot of pigment granules known as melanosomes. Stearns, 1984). In contrast to microtubules, the system Teleost melanophores can aggregate melanosomes to of actin microfilaments in melanophores is poorly the cell centre or disperse them throughout the cyto- developed. Sparse microfilaments have been found in plasm. These melanosome movements, which deter- the cell cortex and in the cell surface microvilli mine the colour changes of animals, are governed by (Schliwa et al. -
Myosin Cooperates with Microtubule Motors During Organelle Transport in Melanophores Stephen L
Brief Communication 161 Myosin cooperates with microtubule motors during organelle transport in melanophores Stephen L. Rogers and Vladimir I. Gelfand Melanophores offer an outstanding system for the movement, several studies have pointed to the activity of study of intracellular motility. These cells aggregate a non-microtubule-based component as well [5–7]. These their pigment-filled melanosomes to the cell center or observations, together with the fact that pigment granules disperse them throughout the cytoplasm in response to in mammalian melanocytes are transported centrifugally hormonal modulation of intracellular cyclic AMP levels by a myosin [8,9], suggest that an actin-based transport in order to effect color changes in lower vertebrates [1]. mechanism may be a ubiquitous feature of melanosome Previous work from our laboratory demonstrated a role transport. This concept is also lent credence by the results for microtubule-based motors in melanosome transport of Rodionov et al., who demonstrate an association of and we succeeded in reconstituting their regulated melanosomes with actin filaments in fish melanophores motility along microtubules in vitro [2,3]. Here we [4]. To test directly the hypothesis that actomyosin- demonstrate that, in addition to microtubule-mediated driven motility contributes to melanosome transport, we motility, melanosomes purified from Xenopus examined the ability of these organelles to move along melanophores exhibit unidirectional movement along actin filaments in vitro. Using the Nitella myosin motility actin filaments in vitro as well. Immunoblotting analysis assay [10], we found that melanosomes purified from shows that these organelles possess the actin-based Xenopus melanophores attached to actin bundles, individ- organelle motor, myosin-V. -
The Genetics of Intellectual Disability: Whole Exome Sequencing to Find Causative Variants in Severe Cases
Master’s Project in Medicine No 4362 The Genetics of Intellectual Disability: whole exome sequencing to find causative variants in severe cases Student Winteler Florence Supervisor Prof. Reymond Alexandre, Ph.D. Center for Integrative Genomics, UNIL Co-Supervisor Gueneau Lucie, Ph.D. Center for Integrative Genomics, UNIL Expert Prof. Draganski Bogdan, Dr. méd Département des neurosciences cliniques, CHUV Lausanne, 25.11.2017 Abstract Intellectual disability (ID) affects 1-3% of the population. A genetic origin is estimated to account for about half of the currently undiagnosed cases, and despite recent successes in identifying some of the genes, it has been suggested that hundreds more genes remain to be identified. ID can be isolated or part of a more complex clinical picture –indeed other symptoms are often found in patients with severe genetic ID, such as developmental delay, organ malformations or seizures. In this project, we used whole exome sequencing (WES) to analyse the coding regions of the genes (exons) of patients with undiagnosed ID and that of their families. The variants called by our algorithm were then grossly sorted out using criteria such as frequency in the general population and predicted pathogenicity. A second round of selection was made by looking at the relevant literature about the function of the underlying genes and pathways involved. The selected variants were then Sanger-sequenced for confirmation. This strategy allowed us to find the causative variant and give a diagnosis to the first family we analysed, as the patient was carrying a mutation in the Methyl-CpG binding protein 2 gene (MECP2), already known to cause Rett syndrome. -
GS3) Or a MYO5A F-Exon Deletion (GS1
Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1) Gaël Ménasché, Chen Hsuan Ho, Ozden Sanal, Jerome Feldmann, Ilhan Tezcan, Fügen Ersoy, Anne Houdusse, Alain Fischer, Geneviève de Saint Basile To cite this version: Gaël Ménasché, Chen Hsuan Ho, Ozden Sanal, Jerome Feldmann, Ilhan Tezcan, et al.. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F- exon deletion (GS1). Journal of Clinical Investigation, American Society for Clinical Investigation, 2003, 112 (3), pp.450-456. 10.1172/JCI18264. inserm-02440362 HAL Id: inserm-02440362 https://www.hal.inserm.fr/inserm-02440362 Submitted on 31 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1) Gaël Ménasché,1 Chen Hsuan Ho,1 Ozden Sanal,2 Jérôme Feldmann,1 Ilhan Tezcan,2 Fügen Ersoy,2 Anne Houdusse,3 Alain Fischer,1 and Geneviève de Saint Basile1 1Unité -
Membrane Trafficking in Health and Disease Rebecca Yarwood*, John Hellicar*, Philip G
© 2020. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2020) 13, dmm043448. doi:10.1242/dmm.043448 AT A GLANCE Membrane trafficking in health and disease Rebecca Yarwood*, John Hellicar*, Philip G. Woodman‡ and Martin Lowe‡ ABSTRACT KEY WORDS: Disease, Endocytic pathway, Genetic disorder, Membrane traffic, Secretory pathway, Vesicle Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with Introduction their environment. In this At a Glance article and accompanying Membrane trafficking pathways are essential for cells to maintain poster, we outline the major cellular trafficking pathways and discuss critical functions, to grow, and to accommodate to their chemical how defects in the function of the molecular machinery that mediates and physical environment. Membrane flux through these pathways this transport lead to various diseases in humans. We also briefly is high, and in specialised cells in some tissues can be enormous. discuss possible therapeutic approaches that may be used in the For example, pancreatic acinar cells synthesise and secrete amylase, future treatment of trafficking-based disorders. one of the many enzymes they produce, at a rate of approximately 0.5% of cellular protein mass per hour (Allfrey et al., 1953), while in Schwann cells, the rate of membrane protein export must correlate School of Biological Sciences, Faculty of Biology, Medicine and Health, with the several thousand-fold expansion of the cell surface that University of Manchester, Manchester, M13 9PT, UK. occurs during myelination (Pereira et al., 2012). The population of *These authors contributed equally to this work cell surface proteins is constantly monitored and modified via the ‡Authors for correspondence ([email protected]; endocytic pathway. -
Role of Cytoplasmic Dynein in Melanosome Transport in Human Melanocytes
Role of Cytoplasmic Dynein in Melanosome Transport in Human Melanocytes H. Randolph Byers, Mina Yaar, Mark S. Eller, Nicole L. Jalbert, and Barbara A. Gilchrest Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, U.S.A. Cytoplasmic dynein is a microtubule-associated transport of melanosomes from the cell body into the retrograde-directed motor molecule for transport of dendrites, whereas melanosome distribution was not membrane-bound organelles. To determine whether affected in sense-treated melanocytes. To determine cytoplasmic dynein is expressed in melanocytes, we whether ultraviolet irradiation modi®es cytoplasmic performed reverse transcriptase polymerase chain dynein expression, melanocyte cultures were reaction using melanocyte cDNA and primers com- exposed to increasing doses of solar-simulated irra- plementary to human brain cytoplasmic dynein diation, equivalent to a mild to moderate sunburn heavy chain. A polymerase chain reaction product of exposure for intact skin. Within 24 h, doses of 5 and the expected molecular size was generated and the 10 mJ per cm2 induced cytoplasmic dynein protein, identity was con®rmed by sequence analysis. whereas doses of 30 mJ per cm2 or more were asso- Western blotting of total melanocyte proteins reacted ciated with decreased levels of cytoplasmic dynein with an anti-intermediate chain cytoplasmic dynein compared with sham-irradiated controls. Our data antibody identi®ed the appropriate 74 kDa band. To show that cytoplasmic dynein participates in retro- determine whether cytoplasmic dynein plays a role grade melanosomal transport in human melanocytes in melanosome transport, duplicate cultures were and suggest that the altered melanosomal distribu- treated with cytoplasmic dynein antisense or sense tion in skin after sun exposure is due, at least in (control) oligodeoxynucleotides and the cells were part, to decreased cytoplasmic dynein levels result- observed by high-resolution time-lapse microscopy, ing in augmented anterograde transport.