Antioxidants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction
Retinal Cell Biology Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction Cristina Escrevente,1 Ana S. Falcão,1 Michael J. Hall,2 Mafalda Lopes-da-Silva,1 Pedro Antas,1 Miguel M. Mesquita,1 Inês S. Ferreira,1 M. Helena Cardoso,1 Daniela Oliveira,1 Ana C. Fradinho,1 Thomas Ciossek,3 Paul Nicklin,3 Clare E. Futter,2 Sandra Tenreiro,1 and Miguel C. Seabra1,2 1iNOVA4Health, CEDOC – Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal 2UCL Institute of Ophthalmology, London, United Kingdom 3Research Beyond Borders, Boehringer Ingelheim, Biberach, Germany Correspondence: Miguel C. Seabra, PURPOSE. We aim to characterize the pathways required for autofluorescent granule (AFG) CEDOC - NOVA Medical School, formation by RPE cells using cultured monolayers. Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; METHODS. We fed RPE monolayers in culture with a single pulse of photoreceptor outer [email protected]. segments (POS). After 24 hours the cells started accumulating AFGs that were compa- rable to lipofuscin in vivo. Using this model, we used a variety of light and electron Received: January 24, 2021 microscopical techniques, flow cytometry and Western blot to analyze the formation of Accepted: June 29, 2021 Published: July 27, 2021 AFGs. We also generated a mutant RPE line lacking cathepsin D by gene editing. Citation: Escrevente C, Falcão AS, RESULTS. AFGs seem to derive from incompletely digested POS-containing phagosomes Hall MJ, et al. Formation of and after 3 days are surrounded by a single membrane positive for lysosome markers. We lipofuscin-like autofluorescent show by various methods that lysosome-phagosome fusion is required for AFG formation, granules in the retinal pigment and that impairment of lysosomal pH or catalytic activity, particularly cathepsin D activity, epithelium requires lysosome enhances AF accumulation. -
Tracking Melanosomes Inside a Cell to Study Molecular Motors and Their Interaction
Tracking melanosomes inside a cell to study molecular motors and their interaction Comert Kural*, Anna S. Serpinskaya†, Ying-Hao Chou†, Robert D. Goldman†, Vladimir I. Gelfand†‡, and Paul R. Selvin*§¶ *Center for Biophysics and Computational Biology and §Department of Physics, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and †Department of Cell and Molecular Biology, Northwestern University School of Medicine, Chicago, IL 60611 Communicated by Gordon A. Baym, University of Illinois at Urbana–Champaign, Urbana, IL, January 9, 2007 (received for review June 4, 2006) Cells known as melanophores contain melanosomes, which are membrane organelles filled with melanin, a dark, nonfluorescent pigment. Melanophores aggregate or disperse their melanosomes when the host needs to change its color in response to the environment (e.g., camouflage or social interactions). Melanosome transport in cultured Xenopus melanophores is mediated by my- osin V, heterotrimeric kinesin-2, and cytoplasmic dynein. Here, we describe a technique for tracking individual motors of each type, both individually and in their interaction, with high spatial (Ϸ2 nm) and temporal (Ϸ1 msec) localization accuracy. This method enabled us to observe (i) stepwise movement of kinesin-2 with an average step size of 8 nm; (ii) smoother melanosome transport (with fewer pauses), in the absence of intermediate filaments (IFs); and (iii) motors of actin filaments and microtubules working on the same cargo nearly simultaneously, indicating that a diffusive step is not needed between the two systems of transport. In concert with our previous report, our results also show that dynein-driven retro- grade movement occurs in 8-nm steps. Furthermore, previous studies have shown that melanosomes carried by myosin V move 35 nm in a stepwise fashion in which the step rise-times can be as long as 80 msec. -
Mini-Review on Lipofuscin and Aging: Focusing on the Molecular Interface, the Biological Recycling Mechanism, Oxidative Stress, and the Gut-Brain Axis Functionality
medicina Review Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality Ovidiu-Dumitru Ilie 1,* , Alin Ciobica 1,2,*, Sorin Riga 2, Nitasha Dhunna 3, Jack McKenna 4, Ioannis Mavroudis 5,6, Bogdan Doroftei 7 , Adela-Magdalena Ciobanu 8 and Dan Riga 2 1 Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania 2 Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; [email protected] (S.R.); [email protected] (D.R.) 3 Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK; [email protected] 4 York Hospital, Wigginton road Clifton, York YO31 8HE, UK; [email protected] 5 Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK; [email protected] 6 Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece 7 Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania; [email protected] 8 Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania; [email protected] * Correspondence: [email protected] (O.-D.I.); [email protected] (A.C.) Received: 17 September 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: Intra-lysosomal accumulation of the autofluorescent “residue” known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. -
NCL Description for Cocker Spaniels
NCL Description for Cocker Spaniels Age of onset of clinical signs: 1.5 - 6 years Age of death or euthanasia: 1.5 - 6 years Abnormalities often observed by the owner: Mental changes: Aggression, irritability, dementia Changes in gait and posture: progressive difficulty walking; weakness and uncoordinated movement. Visual abnormalities: blindness may be present in some cases Seizures/convulsions: reported in some cases Other changes: Jaw champing, head tremors, emaciation Abnormalities observed upon clinical examinations: Clinical neurologic changes: Gait abnormalities, weakness, uncoordinated movement (hypermetric ataxia, proprioceptive deficits, exaggerated spinal reflexes) Clinical ophthalmic changes: ophthalmic changes have been reported Visual abnormalities: blindness has been reported Retinal changes: retinal atrophy has been reported Electroretinography (ERG): not described in reported cases Other clinical findings: none reported Histopathology Brain: Yellow-brown granules were present in neuronal cytoplasm of some neurons in the brain and spinal cord. Storage granules were most abundant in the spinal cord and cerebellum. Cells in the cerebral cortex, brain stem, and Purkinje cells were less affected. Affected neurons were swollen, and often had an eccentric nucleus due to displacement by accumulation of granules. These granules exhibited yellow-green autofluorescence and staining patterns consistent with ceroid and lipofuscin. Degenerative changes within the CNS were also described (neuronal necrosis, Wallerian degeneration, and axonal dystrophy). Eyes: mild irregular loss of photoreceptor cells; massive accumulation of fluorescent material in the retinal pigmented epithelium. Other organs and structures: Storage product also accumulated within the smooth muscle cells of the intestines, pancreas, urinary bladder, and walls of small arteries. Mode of inheritance: Autosomal recessive inheritance is suspected. -
Role of Cdc42 in Melanosome Transfer 1443 Approximate Ratio of 1:1 in KGM
Research Article 1441 Filopodia are conduits for melanosome transfer to keratinocytes Glynis Scott, Sonya Leopardi, Stacey Printup and Brian C. Madden Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA Author for correspondence (e-mail: [email protected]) Accepted 4 January 2002 Journal of Cell Science 115, 1441-1451 (2002) © The Company of Biologists Ltd Summary Melanosomes are specialized melanin-synthesizing cultured with keratinocytes induced a highly dendritic organelles critical for photoprotection in the skin. phenotype with extensive contacts between melanocytes Melanosome transfer to keratinocytes, which involves and keratinocytes through filopodia, many of which whole organelle donation to another cell, is a unique contained melanosomes. These results suggest a unique role biological process and is poorly understood. Time-lapse for filopodia in organelle transport and, in combination digital movies and electron microscopy show that filopodia with our previous work showing the presence of SNARE from melanocyte dendrites serve as conduits for proteins and rab3a on melanosomes, suggest a novel model melanosome transfer to keratinocytes. Cdc42, a small system for melanosome transfer to keratinocytes. GTP-binding protein, is known to mediate filopodia formation. Melanosome-enriched fractions isolated from Movies available on-line human melanocytes expressed the Cdc42 effector proteins PAK1 and N-WASP by western blotting. Expression of Key words: Melanosome, Melanocyte, Cdc42, Filopodia, constitutively active Cdc42 (Cdc42V12) in melanocytes co- Keratinocyte Introduction microscopy of cultured cells, which allowed direct Melanosomes are organelles unique to melanocytes that visualization of melanosome movement and modifiers of function in the synthesis of melanin, a complex pigment actin, microtubules and their motor proteins. -
Amyloid Precursor Protein, Lipofuscin Accumulation and Expression of Autophagy Markers in Aged Bovine Brain D
De Biase et al. BMC Veterinary Research (2017) 13:102 DOI 10.1186/s12917-017-1028-1 RESEARCH ARTICLE Open Access Amyloid precursor protein, lipofuscin accumulation and expression of autophagy markers in aged bovine brain D. De Biase1, A. Costagliola1*, T.B. Pagano1, G. Piegari1, S. Wojcik2, J. Dziewiątkowski2, E. Grieco3, G. Mattace Raso4, V. Russo1, S. Papparella1 and O. Paciello1 Abstract Background: Autophagy is a highly regulated process involving the bulk degradation of cytoplasmic macromolecules and organelles in mammalian cells via the lysosomal system. Dysregulation of autophagy is implicated in the pathogenesis of many neurodegenerative diseases and integrity of the autophagosomal - lysosomal network appears to be critical in the progression of aging. Our aim was to survey the expression of autophagy markers and Amyloid precursor protein (APP) in aged bovine brains. For our study, we collected samples from the brain of old (aged 11–20 years) and young (aged 1–5 years) Podolic dairy cows. Formalin-fixed and paraffin embedded sections were stained with routine and special staining techniques. Primary antibodies for APP and autophagy markers such as Beclin-1 and LC3 were used to perform immunofluorescence and Western blot analysis. Results: Histologically, the most consistent morphological finding was the age-related accumulation of intraneuronal lipofuscin. Furthermore, in aged bovine brains, immunofluorescence detected a strongly positive immunoreaction to APP and LC3. Beclin-1 immunoreaction was weak or absent. In young controls, the immunoreaction for Beclin-1 and LC3 was mild while the immunoreaction for APP was absent. Western blot analysis confirmed an increased APP expression and LC3-II/LC3-I ratio and a decreased expression of Beclin-1 in aged cows. -
Primary Cilia Membrane Assembly Is Initiated by Rab11 and Transport Protein Particle II (TRAPPII) Complex- Dependent Trafficking of Rabin8 to the Centrosome
Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex- dependent trafficking of Rabin8 to the centrosome Christopher J. Westlakea,1, Lisa M. Bayeb, Maxence V. Nachuryc, Kevin J. Wrighta, Karen E. Ervina, Lilian Phua, Cecile Chalounia, John S. Beckd,e, Donald S. Kirkpatricka, Diane C. Slusarskib, Val C. Sheffieldd, Richard H. Schellera,1, and Peter K. Jacksona,1 aGenentech, South San Francisco, CA 94080; Departments of bBiology and dPediatrics and eHoward Hughes Medical Institute, University of Iowa, Iowa City, IA 52242; and cDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305 Contributed by Richard H. Scheller, December 18, 2010 (sent for review August 19, 2010) Sensory and signaling pathways are exquisitely organized in pri- Rab8 ciliary localization (3, 6) and its presence in Golgi/trans- mary cilia. Bardet-Biedl syndrome (BBS) patients have compromised Golgi membranes (7) suggest that Rab8 could participate in ciliary cilia and signaling. BBS proteins form the BBSome, which binds membrane assembly. Previously we reported Rabin8 at the cen- Rabin8, a guanine nucleotide exchange factor (GEF) activating the trosome (3), a localization that probably is important for Rab8 fi Rab8 GTPase, required for ciliary assembly. We now describe serum- ciliary traf cking. A candidate Rab8 GTPase activating protein regulated upstream vesicular transport events leading to centrosomal (GAP) (XM_037557) has been described and prevents cilia for- Rab8 activation and ciliary membrane formation. Using live micros- mation when overexpressed in cells; moreover, a catalytically in- copyimaging,we showthatupon serum withdrawalRab8 is observed active mutant localized to the cilia (6). An emerging mechanism for organizing vesicular transport to assemble the ciliary membrane in ∼100 min. -
Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases
cells Review Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases Ping Song * , Junqing An and Ming-Hui Zou Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA; [email protected] (J.A.); [email protected] (M.-H.Z.) * Correspondence: [email protected]; Tel.: +1-404-413-6636 Received: 29 January 2020; Accepted: 5 March 2020; Published: 10 March 2020 Abstract: Senescent cells are generally characterized by permanent cell cycle arrest, metabolic alteration and activation, and apoptotic resistance in multiple organs due to various stressors. Excessive accumulation of senescent cells in numerous tissues leads to multiple chronic diseases, tissue dysfunction, age-related diseases and organ ageing. Immune cells can remove senescent cells. Immunaging or impaired innate and adaptive immune responses by senescent cells result in persistent accumulation of various senescent cells. Although senolytics—drugs that selectively remove senescent cells by inducing their apoptosis—are recent hot topics and are making significant research progress, senescence immunotherapies using immune cell-mediated clearance of senescent cells are emerging and promising strategies to fight ageing and multiple chronic diseases. This short review provides an overview of the research progress to date concerning senescent cell-caused chronic diseases and tissue ageing, as well as the regulation of senescence by small-molecule drugs in clinical trials and different roles and regulation of immune cells in the elimination of senescent cells. Mounting evidence indicates that immunotherapy targeting senescent cells combats ageing and chronic diseases and subsequently extends the healthy lifespan. Keywords: cellular senescence; senescence immunotherapy; ageing; chronic disease; ageing markers 1. -
Gait Mechanics in Patients with Chronic Obstructive Pulmonary Disease Jenna M
University of Nebraska at Omaha DigitalCommons@UNO Journal Articles Department of Biomechanics 2-2015 Gait mechanics in patients with chronic obstructive pulmonary disease Jenna M. Yentes University of Nebraska at Omaha, [email protected] Kendra K. Schmid University of Nebraska Medical Center Daniel Blanke University of Nebraska at Omaha, [email protected] Debra J. Romberger University of Nebraska Medical Center Stephen I. Rennard University of Nebraska Medical Center See next page for additional authors Follow this and additional works at: https://digitalcommons.unomaha.edu/biomechanicsarticles Part of the Biomechanics Commons Recommended Citation Yentes, Jenna M.; Schmid, Kendra K.; Blanke, Daniel; Romberger, Debra J.; Rennard, Stephen I.; and Stergiou, Nicholas, "Gait mechanics in patients with chronic obstructive pulmonary disease" (2015). Journal Articles. 128. https://digitalcommons.unomaha.edu/biomechanicsarticles/128 This Article is brought to you for free and open access by the Department of Biomechanics at DigitalCommons@UNO. It has been accepted for inclusion in Journal Articles by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. Authors Jenna M. Yentes, Kendra K. Schmid, Daniel Blanke, Debra J. Romberger, Stephen I. Rennard, and Nicholas Stergiou This article is available at DigitalCommons@UNO: https://digitalcommons.unomaha.edu/biomechanicsarticles/128 Yentes et al. Respiratory Research (2015) 16:31 DOI 10.1186/s12931-015-0187-5 RESEARCH Open Access Gait mechanics in patients with chronic obstructive pulmonary disease Jennifer M Yentes1*, Kendra K Schmid2, Daniel Blanke1, Debra J Romberger3,4, Stephen I Rennard4 and Nicholas Stergiou1,2 Abstract Background: Chronic obstructive pulmonary disease (COPD) is characterized by the frequent association of disease outside the lung. -
Complement Activation by Photooxidation Products of A2E, a Lipofuscin Constituent of the Retinal Pigment Epithelium
Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium Jilin Zhou*, Young Pyo Jang*, So Ra Kim*, and Janet R. Sparrow*†‡ Departments of *Ophthalmology and †Pathology and Cell Biology, Columbia University, New York, NY 10032 Edited by Nicholas J. Turro, Columbia University, New York, NY, and approved September 19, 2006 (received for review May 23, 2006) Recent studies have implicated local inflammation and activation responsible for activating complement and local inflammatory of complement amongst the processes involved in the pathogen- events are not known, but infectious agents and sequela related esis of age-related macular degeneration (AMD). Several lines of to oxidative processes have been suggested (13, 15). investigation also indicate that bis-retinoid pigments, such as A2E, The complement cascade is an effector system that, upon that accumulate as lipofuscin in retinal pigment epithelial (RPE) activation, generates a number of bioactive products, some of cells, contribute to the disease process. In an investigation of a which including the complement cleavage products C3a and potential trigger for complement activation in AMD, we explored C5a, trigger inflammatory responses (16–18). Activation of the notion that the complex mixture of products resulting from complement can occur by three different pathways, two of photooxidation of A2E might include a range of fragments that these being the classical and alternative pathways. In the could be recognized by the complement system as ‘‘foreign’’ and classical pathway, activation is initiated by binding of protein that could serve to activate the complement system, leading to C1q, the recognition subunit of the C1 complex, to an acti- low-grade inflammation. -
Vimentin Intermediate Filaments in Fish Melanophores
Vimentin intermediate filaments in fish melanophores F. K. GYOEVA Institute of I'mlein Research, Academy of Scienc of the USSR, 142292 I'ushchino, Moscmv Region, USSR E. V. LEONOVA, V. I. RODIONOV and V. I. GELFAND* A. N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscmv State University, 119S99 Moscmv, USSR * Author for correspondence Summary The distribution and chemical composition of as has been found in other cell types. Trans- intermediate filaments in cultured melanophores mission electron microscopy confirmed the pres- of two teleost species - Gymnocorymbus ternetzi ence of intermediate filaments in melanophores. and Pterophyllum scalare - were studied by im- Immunoblotting experiments showed the pres- munofluorescence staining and immunoblotting ence of the intermediate filament protein vimen- techniques. The immunofluorescence staining of tin in melanophore lysates. Therefore, teleost the melanophores with monoclonal and poly- melanophores possess a developed radial system clonal antibodies to the intermediate filament of vimentin intermediate filaments. protein vimentin revealed a system of fibrils radiating from the cell centre. These fibrils were Key words: melanophore, intermediate filaments, resistant to 0-6M-KC1 and nocodazole treatments vimentin. Introduction be involved. Microtubules form a well-developed radial pattern in fish melanophores and their disruption Melanophores are highly specialized cells, containing a inhibits pigment granule movement (Schliwa, 1981; lot of pigment granules known as melanosomes. Stearns, 1984). In contrast to microtubules, the system Teleost melanophores can aggregate melanosomes to of actin microfilaments in melanophores is poorly the cell centre or disperse them throughout the cyto- developed. Sparse microfilaments have been found in plasm. These melanosome movements, which deter- the cell cortex and in the cell surface microvilli mine the colour changes of animals, are governed by (Schliwa et al. -
Myosin Cooperates with Microtubule Motors During Organelle Transport in Melanophores Stephen L
Brief Communication 161 Myosin cooperates with microtubule motors during organelle transport in melanophores Stephen L. Rogers and Vladimir I. Gelfand Melanophores offer an outstanding system for the movement, several studies have pointed to the activity of study of intracellular motility. These cells aggregate a non-microtubule-based component as well [5–7]. These their pigment-filled melanosomes to the cell center or observations, together with the fact that pigment granules disperse them throughout the cytoplasm in response to in mammalian melanocytes are transported centrifugally hormonal modulation of intracellular cyclic AMP levels by a myosin [8,9], suggest that an actin-based transport in order to effect color changes in lower vertebrates [1]. mechanism may be a ubiquitous feature of melanosome Previous work from our laboratory demonstrated a role transport. This concept is also lent credence by the results for microtubule-based motors in melanosome transport of Rodionov et al., who demonstrate an association of and we succeeded in reconstituting their regulated melanosomes with actin filaments in fish melanophores motility along microtubules in vitro [2,3]. Here we [4]. To test directly the hypothesis that actomyosin- demonstrate that, in addition to microtubule-mediated driven motility contributes to melanosome transport, we motility, melanosomes purified from Xenopus examined the ability of these organelles to move along melanophores exhibit unidirectional movement along actin filaments in vitro. Using the Nitella myosin motility actin filaments in vitro as well. Immunoblotting analysis assay [10], we found that melanosomes purified from shows that these organelles possess the actin-based Xenopus melanophores attached to actin bundles, individ- organelle motor, myosin-V.