Electron Bifurcation in C1-Fermentations

Total Page:16

File Type:pdf, Size:1020Kb

Electron Bifurcation in C1-Fermentations C1net - Conference 4 – Chemical from C1 gas East Midland Conference, University of Nottingham, 20-23 January 2019 Electron Bifurcation in C1-Fermentations Wolfgang Buckel Laboratorium für Mikrobiologie Fachbereich Biologie Flavin-Based Electron Bifurcation (FBEB) Low potential ̶ Energy + Reduction potential Buckel & Thauer (2018 ) Chemical Reviews & Frontiers in Microbiology Ferredoxin or Flavodoxin, the 'energy rich' electron carriers in anaerobes. Clostridial ferredoxin with two [4Fe-4S] clusters E°' = −60 mV E°'1 = −340 mV 1 E°' = −420 mV E°'2 = −405 mV 2 Ferredoxin (oxidized) + e − = Ferredoxin − (reduced) Flavodoxin (semiquinone) + e − = Flavodoxin ̶ (hydroquinone) 3 Acetogenesis requires reduced ferredoxin H2 or CoA NADPH ATP + THF Ferredoxin − CO Formate CH -THF CO CO 2 2 NADH 3 2 Acetyl-CoA Ferredoxin − CO 2 Acetate + ATP Pyruvate Cell carbon + − H2 + 2 Ferredoxin ox = 2 H + 2 Ferredoxin red ; ∆G°' ≈ 0. Reduction potential E°' (H 2) = −414 mVolt E°' (Ferredoxin) = −405 mVolt Bifurcating Hydrogenases NAD + reductase in acetogens Heterodisulfide reductase in methanogens > 250 Pa H2; E' = −370 mV > 10 Pa H2; E' = −320 mV E'/ mV 5 E'/ mV − 10 Pa H2 2 Fd /Fd -500 2 Fd /Fd − -500 2 × e− -400 90 mV -400 2 × e− 2 H2 180 mV 2 H2 -300 -300 2 × e− NAD +/NADH 2 × e− -200 -200 Heterodisulfide/CoMSH+CoBSH -100 -100 Schut and Adams 2009 Thauer, Buckel et al. 2008 Schuchmann and Müller 2012 Thauer et al. 2013 Butyrate norishes the mucosa cells. Food Colon Mucosa cells Fibers Blood vessel Monosaccharides Bacteria Amino acids Butyrate O2 CO 2 anaerobic aerobic Clostridial butyrate synthesis Carbohydrates and amino acids Amino acids 7 Flavin-based Electron Bifurcation in Clostridia Electron transferring flavoprotein (EtfAB) and Butyryl-CoA dehydrogenase (Bcd) _ 2 Ferredoxin − → 2 reduced Fd 2- Low potential acceptor EtfB − E' = -500 mV FAD 2 × e Reduction EtfA Potential 2 NADH FAD (Energy) Two-electron Bcd Bcd donor FAD FAD E' = -300 mV 2 × e- High potential acceptor E' = -10 mV Crotonyl-CoA → Butyryl-CoA + 8 Buckel and Thauer 2008 Flavin-based electron confurcation catalyzed by the NfnAB complex NADH-Dependent Ferredoxin: NADP Reductase _ 2 reduced Fd −→ 2 Ferredoxin Low potential donor E' = -500 mV 2 × e− NfnB Reduction FAD 2 NADP + → 2 NADPH Potential 2 × e− NfnA Two-electron (Energy) FAD NADH → NAD + acceptor High potential donor E' = -370 mV + E' = -280 mV 9 Thauer et al. 2010, 2012; Ermler, Thauer et al. 2015; BETCy group: Lubner et al. 2017 Electron transferring flavoprotein (Etf) – Butyryl-CoA dehydrogenase (Bcd) Acidaminococcus fermentans Clostridia Megasphaera elsdenii Gram-positive Firmicutes Gram-negative Firmicutes 10 EtfAB from Acidaminococcus fermentans Domain II α-FAD Domain III Hindge region α−subunit β−subunit β-FAD Domain I NADH and ferredoxin binding sites 11 Amr M. Mowafy and Ulrich Ermler Interaction of NADH with EtfAB from Acidaminococcus fermentans the in the bifurcation-like state 80° •− β-FAD 10° α-FAD 18 Å NADH Ferredoxin binding site Nilanjan Pal Chowdhury & Ulrich Ermler EtfAB-Bcd Complex from Clostridium difficile Bifurcation-like state 13 EtfAB-Bcd Complex from Clostridium difficile Dehydrogenase-State Etf domain II α-FAD δ-FAD Bcd2 Etf domain I β-FAD Etf domain III Bcd1 Demmer, J. K., Chowdhury, N. P., Selmer, T., Ermler, U., Buckel, W. Nature Commun. 2017, 8, 1577 Leonor Michaelis 1875 - 1949 Theory of Oxidation-Reduction: “The task of the protein be ( a) to establish the proper geometric configuration between the different prosthetic groups, and ( b) to aid the formation and stabilization of free radicals.” in The Enzymes, Chemistry and Mechanism of Action (eds Sumner, J. B. & Myrbäck, K.) vol. 2, part 1, pp. 1- 54 (Academic Press , New York, 1951 ). Stepwise oxidation of flavin hydroquinone Main interactions of FAD semiquinone anions in EtfAB Stable α-FAD •− Extremely unstable β-FAD •− +4 −15 Ks = 10 Ks ≈ 10 [SQ] 2 Stability constant Ks = [Q] × [HQ] Electron bifurcation requires a very unstable semiquinone Nernst equation: −1 Reduction potential: E = ± [2.3 RT (2 F) × lg Ks + Eflavin ] = ± [0.030 lg Ks − 0.28] −1 ∆E = E1 − E2 = 2.3 RT × F × lg Ks = 0.059 lg Ks Region of electron bifurcation Region of most flavoproteins -1000 -800 -600 E (SQ/QH ) Free flavin 1 2 -400 E (mV) b-Nfn? -200 β-Etf ? Flavodoxin 0 +200 E (Q/SQ) Ubiquinone O α-Etf 2 in bc complex +400 1 -20 -15 -10 -5 0 +5 +10 +15 +20 lg K ‘crossed-over‘ ‘nomal‘ s Adapted from Nitschke and Russel 2011 Proposed electron flow in the EtfAB-Bcd complex. −800 Q/SQ 6 Å Reduction potential Em (mV) − −600 e 40 − Ferredoxin 0 NADH H ̶ Q/QH 2 β-FAD α-FAD −200 SQ/QH 2 e − Crotonyl-CoA Q/SQ + SQ/QH 2 2e − 0 e− Q/SQ δ-FAD Butyryl-CoA 14 Å +200 SQ/QH 2 Electron-transferring flavoprotein Butyryl-CoA dehydrogenase The eleven established flavin-based electron-bifurcating systems System Donor High pot. Low pot. Organism Established by Acceptor Acceptor Butyryl-CoA 2 NADH Crotonyl-CoA Ferredoxin Clostridia Buckel & Thauer 2008 dehydrogenase/EtfAB Caffeyl-CoA 2 NADH Caffeyl-CoA Ferredoxin Acetobacterium Müller 2010 reductase/EtfAB Lactate 2 NADH Pyruvate Ferredoxin Acetobacterium Müller 2012 dehydrogenase/EtfAB FixABCX 2 NADH Rhodoquinone Ferredoxin Rhodospirillum rubrum Nordlund 2004 Ubiquinone Aztobacter vinelandii Ledbetter et al. 2017 Transhydrogenase, Nfn 2 NADPH NAD + Ferredoxin Clostridia, Acetogens Thauer 2010 Pyrococcus furiosus Lubner et al. 2017 HdrABC-[NiFe]- 2 H 2 CoM-SS-CoB Ferredoxin Methanogens Thauer & Buckel 2008 hydrogenase HdrABC-[W/Se]- 2 CoM-SS-CoB Ferredoxin Methanogens Leigh 2010 formate deydrogenase Formate HdrABC-F420 H2 2 F 420 H2 CoM-SS-CoB Ferredoxin Methanosarcina acetivorans Ferry 2017 + NADH dehydrogenase: 2 H 2 NAD Ferredoxin Thermotoga, Acetobacterium Adams ,Müller ,Thauer [FeFe]-hydrogenase Morella thermoacetica 2009-10-11 + NADPH dehydrogenase: 2 H 2 NADP Ferredoxin Clostridium Thauer 2013 [FeFe]-hydrogenase autoethanogenum NADH-dehydrogenase- 2 NAD + Ferredoxin Clostridium acidi-urici Thauer 2015 21 [W/Se]-formate-dh Formate EtfAB Transhydrogenase HdrABC NuoF (FMN) Crystal structure of the heterodisulfide reductase/hydrogenase complex from Methanobacterium wolfei CoM-S-S-CoB + 2 H+ → CoM-SH + CoB-SH + 2 H 2 → 4 H FAD − 2 Ferredoxin ox → 2 Ferredoxin red Tristan Wagner, Ulrich Ermer & Seigo Shima, Science 2017 Bifurcating Hydrogenase 4 H+ HydA [FeFe] [4Fe4S] 2 H 3 [4Fe4S] 2 [2Fe2S] 2 Ferredoxin − ? [2Fe-2S] HydB ∼ NuoF 2 Ferredoxin HydC ∼ NuoE 3 [4Fe4S] [2Fe2S] FMN NADH NAD + + H + Hydrogenase with a Bifurcating H-Cluster ? HydA 3x[4Fe4S] − 2 Ferredoxin [2Fe2S] 4 H + [2Fe-2S] [FeFe] 2 Ferredoxin [4Fe4S] 2 H HydC ∼ NuoE 2 [FeFe] [4Fe4S] 3 [4Fe4S] HydB ∼ NuoF [2Fe2S] FMN Fe II ---- Fe II ∼ FAD Hydroquinone Fe III ---- Fe II ∼ FAD Semiquinone NADH NAD + + H + Fe III ---- Fe III ∼ FAD Quinone Peters, Beratan, Schut & Adams (2018) Chem Com. Formate Dehydrogenase with a Bifurcating Molybdenum Cofactor ? HydA FdhF2 2 Ferredoxin − 3 [4Fe4S] [2Fe2S] 2 CO 2 Mo-Cofactor [2Fe-2S] 2 Ferredoxin 2 Formate − HydC ∼ NuoE 3 [4Fe4S] [2Fe2S] Molybdate IV ∼ FAD hydroquinone 3 [4Fe4S] Molybdate V ∼ FAD semiquinone [2Fe2S] FMN VI HydB ∼ NuoF Molybdate ∼ FAD quinone NADH NAD + + H + Nitschke, W. and Russell, M. J. 2011 Wang, S., Huang, H., Kahnt, J., and Thauer, R. K. 2013 Acknowledgements Coworkers Collaborations Ulrich Ermler and Julius Demmer, MPI für Biophysik, Frankfurt Thorsten Selmer, FH Aachen Rudolf K. Thauer, MPI Marburg Nilanjan Pal Chowdhury Wolfgang Nitschke, CNRS Marseilles Amr Mohammed Mowafy 26.
Recommended publications
  • Harnessing Escherichia Coli for Bio-Based Production of Formate
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.06.425572; this version posted January 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Harnessing Escherichia coli for bio‐based production of formate under pressurized H2 and CO2 gases. Magali Roger1,2, Tom C. Reed2 and Frank Sargent2* 1 Aix Marseille University, CNRS, Bioenergetics and Protein Engineering (BIP UMR7281), 31 Chemin Joseph Aiguier, CS70071, 13042 Marseille Cedex 09, France. 2 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, England, UK *For Correspondence: Prof Frank Sargent FRSE, Division of Plant & Microbial Biology, School of Natural & Environmental Sciences, Newcastle University, Devonshire Building, Kensington Terrace, Newcastle upon Tyne NE2 4BF, England, United Kingdom. T: +44 191 20 85138. E: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.06.425572; this version posted January 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSRACT Escherichia coli is gram‐negative bacterium that is a workhorse of the biotechnology industry. The organism has a flexible metabolism and can perform a mixed‐acid fermentation under anaerobic conditions. Under these conditions E. coli synthesises a formate hydrogenlyase isoenzyme (FHL‐1) that can generate molecular hydrogen and carbon dioxide from formic acid.
    [Show full text]
  • Recent Progress in the Microbial Production of Pyruvic Acid
    fermentation Review Recent Progress in the Microbial Production of Pyruvic Acid Neda Maleki 1 and Mark A. Eiteman 2,* 1 Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran; [email protected] 2 School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA * Correspondence: [email protected]; Tel.: +1-706-542-0833 Academic Editor: Gunnar Lidén Received: 10 January 2017; Accepted: 6 February 2017; Published: 13 February 2017 Abstract: Pyruvic acid (pyruvate) is a cellular metabolite found at the biochemical junction of glycolysis and the tricarboxylic acid cycle. Pyruvate is used in food, cosmetics, pharmaceutical and agricultural applications. Microbial production of pyruvate from either yeast or bacteria relies on restricting the natural catabolism of pyruvate, while also limiting the accumulation of the numerous potential by-products. In this review we describe research to improve pyruvate formation which has targeted both strain development and process development. Strain development requires an understanding of carbohydrate metabolism and the many competing enzymes which use pyruvate as a substrate, and it often combines classical mutation/isolation approaches with modern metabolic engineering strategies. Process development requires an understanding of operational modes and their differing effects on microbial growth and product formation. Keywords: auxotrophy; Candida glabrata; Escherichia coli; fed-batch; metabolic engineering; pyruvate; pyruvate dehydrogenase 1. Introduction Pyruvic acid (pyruvate at neutral pH) is a three carbon oxo-monocarboxylic acid, also known as 2-oxopropanoic acid, 2-ketopropionic acid or acetylformic acid. Pyruvate is biochemically located at the end of glycolysis and entry into the tricarboxylic acid (TCA) cycle (Figure1).
    [Show full text]
  • Fumarate Respiration of Wolinella Succinogenes: Enzymology, Energetics and Coupling Mechanism
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1553 (2002) 23^38 www.bba-direct.com Review Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism Achim Kro«ger a;*, Simone Biel a,Jo«rg Simon a, Roland Gross a, Gottfried Unden b, C. Roy D. Lancaster c a Institut fu«r Mikrobiologie, Johann Wolfgang Goethe-Universita«t, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany b Institut fu«r Mikrobiologie und Weinforschung, Johannes Gutenberg-Universita«t, D-55099 Mainz, Germany c Max-Planck-Institut fu«r Biophysik, Heinrich-Ho¡mann-Str. 7, D-60528 Frankfurt am Main, Germany Received 10 May 2001; received in revised form 27 August 2001; accepted 12 October 2001 Abstract Wolinella succinogenes performs oxidative phosphorylation with fumarate instead of O2 as terminal electron acceptor and H2 or formate as electron donors. Fumarate reduction by these donors (`fumarate respiration') is catalyzed by an electron transport chain in the bacterial membrane, and is coupled to the generation of an electrochemical proton potential (vp) across the bacterial membrane. The experimental evidence concerning the electron transport and its coupling to vp generation is reviewed in this article. The electron transport chain consists of fumarate reductase, menaquinone (MK) and either hydrogenase or formate dehydrogenase. Measurements indicate that the vp is generated exclusively by MK reduction with H2 or formate; MKH2 oxidation by fumarate appears to be an electroneutral process. However, evidence derived from the crystal structure of fumarate reductase suggests an electrogenic mechanism for the latter process.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7927,859 B2 San Et Al
    USOO7927859B2 (12) United States Patent (10) Patent No.: US 7927,859 B2 San et al. (45) Date of Patent: Apr. 19, 2011 (54) HIGH MOLARSUCCINATEYIELD FOREIGN PATENT DOCUMENTS BACTERIA BY INCREASING THE WO WO99.06532 * 2/1999 INTRACELLULAR NADHAVAILABILITY WO WO 2007 OO1982 1, 2007 OTHER PUBLICATIONS (75) Inventors: Ka-Yiu San, Houston, TX (US); George N. Bennett, Houston, TX (US); Ailen Branden et al. Introduction to Protein Structure, Garland Publishing Inc., New York, p. 247, 1991.* Sánchez, Houston, TX (US) ExPASy. Formate Dehydrogenase.* Vemuri et al. Effects of growth mode and pyruvate carboxylase on (73) Assignee: Rice University, Houston, TX (US) Succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol. Apr. 2002:68(4): 1715 (*) Notice: Subject to any disclaimer, the term of this 27.3 patent is extended or adjusted under 35 Goodbye et al. Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene. U.S.C. 154(b) by 791 days. Dec. 21, 1989;85(1):209-14.* Datsenko et al. One-step inactivation of chromosomal genes in (21) Appl. No.: 10/923,635 Escherichia coli K-12 using PCR products. Proc Natl AcadSci USA. Jun. 6, 2000:97(12):6640-5.* (22) Filed: Aug. 20, 2004 Berrios-Rivera et al. Metabolic engineering of Escherichia coli: increase of NADHavailability by overexpressing an NAD(+)-depen (65) Prior Publication Data dent formate dehydrogenase. Metab Eng. Jul. 2002;4(3):217-29.* Gupta et al. Escherichia coli derivatives lacking both alcohol US 2005/OO42736A1 Feb. 24, 2005 dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.
    [Show full text]
  • NAD+-Dependent Formate Dehydrogenase from Plants
    reVIeWS NAD+-dependent Formate Dehydrogenase from Plants A.A. Alekseeva1,2,3, S.S. Savin2,3, V.I. Tishkov1,2,3,* 1Chemistry Department, Lomonosov Moscow State University 2Innovations and High Technologies MSU Ltd 3Bach Institute of Biochemistry, Russian Academy of Sciences *E-mail: [email protected] Received 05.08.2011 Copyright © 2011 Park-media, Ltd. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) widely occurs in nature. FDH consists of two identical subunits and contains neither prosthetic groups nor metal ions. This type of FDH was found in different microorganisms (including pathogenic ones), such as bacteria, yeasts, fungi, and plants. As opposed to microbiological FDHs functioning in cytoplasm, plant FDHs localize in mitochondria. Formate dehydrogenase activity was first discovered as early as in 1921 in plant; however, until the past decade FDHs from plants had been considerably less studied than the enzymes from microorganisms. This review summarizes the recent results on studying the physiological role, properties, structure, and protein engineering of plant formate dehy- drogenases. KEYWORDS plant formate dehydrogenase; physiological role; properties; structure; expression; Escherichia coli; protein engineering. ABBREVIATIONS FDH – formate dehydrogenase; PseFDH, CboFDH – formate dehydrogenases from
    [Show full text]
  • A Global Regulatory Genein Escherichia Coli Mediating
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 1888-1892, March 1988 Genetics areA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways (global control/anaerobic repression/modulon) S. IUCHI AND E. C. C. LIN* Department of Microbiology and Molecular Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 Communicated by Jon Beckwith, December 7, 1987 (receivedfor review October 23, 1987) ABSTRACT In Escherichia coli the levels of numerous genes, including those encoding nitrate, trimethylamine N- enzymes associated with aerobic metabolism are decreased oxide, and fumarate reductases, depends on the pleiotropic during anaerobic growth. In an arcA mutant the anaerobic transcriptional activator encoded by the fnr gene. Aerobic levels of these enzymes are increased. The enzymes, which are repression of this system appears to result from a deficiency encoded by different regulons, include members that belong to of functional Fnr protein (ref. 3; for a review, see ref. 2). In the tricarboxylic acid cycle, the glyoxylate shunt, the pathway the absence of 02, nitrate becomes the dominant electron for fatty acid degradation, several dehydrogenases of the acceptor by inhibiting the induction of fumarate and tri- flavoprotein class, and the cytochrome o oxidase complex. methylamine N-oxide reductases. In this control, nitrate and Transductional crosses placed the arcA gene near min o on the a molybdenum compound act as corepressors (4). The chromosomal map. Complementation tests showed that the apo-repressor may be encoded by the narL gene (5), which arcA gene corresponded to the dye gene, which is also known also acts as an activator for the synthesis of nitrate reductase as fexA, msp, seg, or sfrA because of various phenotypic (6).
    [Show full text]
  • FORMATE DEHYDROGENASE Ph
    Enzymatic Assay of FORMATE DEHYDROGENASE (EC 1.2.1.2) PRINCIPLE: Formate Dehydrogenase Formate + ß-NAD > CO2 + ß-NADH Abbreviations used: ß-NAD = ß-Nicotinamide Adenine Dinucleotide, Oxidized Form ß-NADH = ß-Nicotinamide Adenine Dinucleotide, Reduced Form CONDITIONS: T = 37°C, pH = 7.0, A340nm, Light path = 1 cm METHOD: Continuous Spectrophotometric Rate Determination REAGENTS: A. 200 mM Sodium Phosphate Buffer, pH 7.0 at 37°C (Prepare 100 ml in deionized water using Sodium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. S- 0751. Adjust the pH to 7.0 with 1 M NaOH.) B. 200 mM Sodium Formate Solution (Form) (Prepare 10 ml in deionized water using Formic Acid, Sodium Salt, Sigma Prod. No. F-6502. PREPARE FRESH.) C. 10.5 mM ß-Nicotinamide Adenine Dinucleotide Solution (ß-NAD) (Prepare 3 ml in deionized water using ß-Nicotinamide Adenine Dinucleotide, Sigma Prod. No. N-7004 or dissolve the contents of one 20 mg vial of ß-Nicotinamide Adenine Dinucleotide, Sigma Stock No. 260-120, in the appropriate volume of deionized water. PREPARE FRESH.) D. 1.5 mM ß-Nicotinamide Adenine Dinucleotide Solution (Enzyme Diluent) (Prepare 50 ml in Reagent A using ß-Nicotinamide Adenine Dinucleotide, Sigma Prod. No. N-7004. PREPARE FRESH.) E. Formate Dehydrogenase Enzyme Solution (Immediately before use, prepare a solution containing 0.25 - 0.50 unit/ml of Formate Dehydrogenase in Cold Reagent D.) SPFORM09 Page 1 of 3 Revised: 05/23/96 Enzymatic Assay of FORMATE DEHYDROGENASE (EC 1.2.1.2) PROCEDURE: Pipette (in milliliters) the following reagents into suitable cuvettes: Test Blank Deionized Water 1.10 1.10 Reagent A (Buffer) 0.75 0.75 Reagent B (Form) 0.75 0.75 Mix by inversion and equilibrate to 37°C.
    [Show full text]
  • Endogenous Superoxide Is a Key Effector of the Oxygen Sensitivity of a Model Obligate Anaerobe
    Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe Zheng Lua,1, Ramakrishnan Sethua,1, and James A. Imlaya,2 aDepartment of Microbiology, University of Illinois, Urbana, IL 61801 Edited by Irwin Fridovich, Duke University Medical Center, Durham, NC, and approved March 1, 2018 (received for review January 3, 2018) It has been unclear whether superoxide and/or hydrogen peroxide fects (3, 4). Thus, these phenotypes confirmed the potential tox- play important roles in the phenomenon of obligate anaerobiosis. icity of reactive oxygen species (ROS), and they broadly supported This question was explored using Bacteroides thetaiotaomicron,a the idea that anaerobes might be poisoned by endogenous major fermentative bacterium in the human gastrointestinal tract. oxidants. Aeration inactivated two enzyme families—[4Fe-4S] dehydratases The metabolic defects of the mutant E. coli strains were sub- and nonredox mononuclear iron enzymes—whose homologs, in sequently traced to damage to two types of enzymes: dehy- contrast, remain active in aerobic Escherichia coli. Inactivation- dratases that depend upon iron-sulfur clusters and nonredox rate measurements of one such enzyme, B. thetaiotaomicron fu- enzymes that employ a single atom of ferrous iron (5–9). In both marase, showed that it is no more intrinsically sensitive to oxi- enzyme families, the metal centers are solvent exposed so that dants than is an E. coli fumarase. Indeed, when the E. coli they can directly bind and activate their substrates. Superoxide B. thetaiotaomicron enzymes were expressed in , they no longer and H2O2 are tiny molecules that cannot easily be excluded from could tolerate aeration; conversely, the B.
    [Show full text]
  • Metabolically Engineered Bacteria for Producing Hydrogen Via Fermentation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M University PDFlib PLOP: PDF Linearization, Optimization, Protection Page inserted by evaluation version www.pdflib.com – [email protected] Microbial Biotechnology (2008) 1(2), 107–125 doi:10.1111/j.1751-7915.2007.00009.x Review Metabolically engineered bacteria for producing hydrogen via fermentation Gönül Vardar-Schara,1* Toshinari Maeda2 and ambient temperature and pressure; hence, it requires less Thomas K. Wood2,3,4 energy compared with conventional thermal systems 1Department of Molecular Biosciences and Bioengineer- (steam methane reforming, 850°C, 25 bar) (Yi and Harri- ing, University of Hawaii, 1955 East-West Road, Agricul- son, 2005) and compared with electrolytic processes. tural Sciences 218, Honolulu, HI 96822, USA. Microorganisms produce hydrogen via two main path- 2Artie McFerrin Department of Chemical Engineering, ways: photosynthesis and fermentation. Photosynthesis 3Department of Biology and 4Zachry Department of Civil is a light-dependent process, including direct biophotoly- and Environmental Engineering, 220 Jack E. Brown sis, indirect biophotolysis and photo-fermentation, Building, Texas A&M University, College Station, TX whereas, anaerobic fermentation, also known as dark 77843-3122, USA. fermentation, is a light-independent process (Benemann, 1996; Hallenbeck and Benemann, 2002). Photosynthetic hydrogen production is performed by photosynthetic Summary microorganisms, such as algae (Benemann, 2000), Hydrogen, the most abundant and lightest element in photosynthetic bacteria (Matsunaga et al., 2000) and the universe, has much potential as a future energy cyanobacteria (Dutta et al., 2005). Fermentative hydro- source. Hydrogenases catalyse one of the simplest gen production is conducted by fermentative microorgan- + - chemical reactions, 2H + 2e ↔ H2, yet their structure isms, such as strict anaerobes [Clostridium strains (Levin is very complex.
    [Show full text]
  • Formate Dehydrogenases and Hydrogenases in Syntrophic Propionate-Oxidizing Communities
    Formate dehydrogenases and hydrogenases in syntrophic propionate-oxidizing communities Gene analysis and transcriptional profiling Petra Worm Thesis committee Thesis supervisor Prof. dr. ir. A.J.M. Stams Personal chair at the Laboratory of Microbiology Wageningen University Thesis co-supervisor Dr. C.M. Plugge Assistant Professor at the Laboratory of Microbiology Other members Prof. dr. S. C. de Vries, Wageningen University Prof. dr. B. Schink, University of Konstanz, Germany Prof. dr. M. J. Teixeira de Mattos, University of Amsterdam Dr. H. J. M. op den Camp, Radboud University Nijmegen This research was conduted under the auspices of the Netherlands Research School for the Socio-Economic and Natural Sciences of the Environment (SENSE) Formate dehydrogenases and hydrogenases in syntrophic propionate-oxidizing communities Gene analysis and transcriptional profiling Petra Worm Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 28th of June 2010 at 4 p.m. in the Aula Petra Worm Formate dehydrogenases and hydrogenases in syntrophic propionate- oxidizing communities: gene analysis and transcriptional profiling PhD Thesis, Wageningen University, Wageningen, the Netherlands (2010) 138 pages. With references, and with summaries in Dutch and English ISBN 978-90-8585-675-7 TABLE OF CONTENTS Chapter 1 1 General introduction Chapter
    [Show full text]
  • A New Era for Electron Bifurcation
    Available online at www.sciencedirect.com ScienceDirect A new era for electron bifurcation 1,2 3,4 5 John W Peters , David N Beratan , Brian Bothner , 6 7 8 R Brian Dyer , Caroline S Harwood , Zachariah M Heiden , 9 10 11 2,12 Russ Hille , Anne K Jones , Paul W King , Yi Lu , 11 13 11 Carolyn E Lubner , Shelley D Minteer , David W Mulder , 1,2 14 2,15 Simone Raugei , Gerrit J Schut , Lance C Seefeldt , 5 1 Monika Tokmina-Lukaszewska , Oleg A Zadvornyy , 4 14 Peng Zhang and Michael WW Adams Electron bifurcation, or the coupling of exergonic and endergonic oxidation-reduction reactions, was discovered by Peter Mitchell Current Opinion in Chemical Biology 2018,47:32–38 and provides an elegant mechanism to rationalize and This review comes from a themed issue on Energy understand the logic that underpins the Q cycle of the respiratory chain. Thought to be a unique reaction of respiratory complex III Edited by Spiros S Skourtis and David N Beratan for nearly 40 years, about a decade ago Wolfgang Buckel and For a complete overview see the Issue and the Editorial Rudolf Thauer discovered that flavin-based electron bifurcation Available online 1st August 2018 is also an important component of anaerobic microbial https://doi.org/10.1016/j.cbpa.2018.07.026 metabolism. Their discovery spawned a surge of research 1367-5931/ã 2018 Elsevier Ltd. All rights reserved. activity, providing a basis to understand flavin-based bifurcation, forging fundamental parallels with Mitchell’s Q cycle and leading to the proposal of metal-based bifurcating enzymes.
    [Show full text]
  • Direct Detection of Potential Selenium Delivery Proteins by Using an Escherichia Coli Strain Unable to Incorporate Selenium from Selenite Into Proteins
    Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins Gerard M. Lacourciere, Rodney L. Levine, and Thressa C. Stadtman* Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 Contributed by Thressa C. Stadtman, May 15, 2002 Selenium can be metabolized for protein synthesis by two major involved in the cysteine biosynthetic pathway can generate free pathways in vivo. In a specific pathway it can be inserted into selenocysteine. The cysteyl-tRNA synthetase can charge the polypeptide chains as the amino acid selenocysteine, as directed by tRNAcys with either cysteine or selenocysteine and the latter is the UGA codon. Alternatively, selenium can be substituted for inserted into proteins nonspecifically in place of cysteine (9). sulfur to generate the free amino acids selenocysteine and sel- Several proteins have been identified as sulfur transferases or enomethionine, and these are incorporated nonspecifically into delivery proteins in specific sulfur metabolic pathways. These proteins in place of cysteine and methionine, respectively. A include the thiI gene product, a sulfur transferase required for mutant strain of Escherichia coli was constructed that is deficient thiazole and S4U formation (10), 3-mercaptopyruvate sul- in utilization of inorganic selenium for both specific and nonspe- furtransferase (11), and rhodanese (12). Considering that in vivo cific pathways of selenoprotein synthesis. Disruption of the cysK concentrations of sulfur are much greater than selenium, trans- gene prevented synthesis of free cysteine and selenocysteine from port proteins may exist to ensure the effective delivery of inorganic S and Se precursors.
    [Show full text]