AI in HR: the New Frontier INTRODUCTION the Robots Have Arrived

Total Page:16

File Type:pdf, Size:1020Kb

AI in HR: the New Frontier INTRODUCTION the Robots Have Arrived INHR PEOPLE + FOCUSSTRATEGY’S WHITE PAPER SERIES AI in HR: The New Frontier INTRODUCTION The robots have arrived. Only they don’t look like robots. AI- and machine learning-based technology is embedded in the tools you likely interact with every day—navigation apps; predictive text in e-mail and messaging; digital assistants like Alexa and Siri; and recommendation engines on Netflix, YouTube and Spotify. Today, AI-powered technology seamlessly integrates into the things we already do—and it’s poised to do the same for HR. Since AI-based solutions predict, recommend and communicate based on data, AI has the opportunity to transform HR practices in areas where there is adequate data and where that data can be utilized to create greater efficiency, communicate at scale, provide recommendations and predict outcomes. Many companies already have a vast amount of data on candidates and employees that can help them source, assess, hire, train, develop and pay people more efficiently with the application of AI-driven tools. he International Data Corporation smarter hiring choices that ensure quali- T(IDC) estimates that worldwide spend- ty hires while eliminating hidden biases. ing on AI systems will reach $35.8 billion The recruiting process is filled with in 2019 and $79 billion by 2022. And Gart- numerous repeatable tasks such as re- ner estimates that, by 2022, AI-derived sume screening and interview scheduling business value will reach $3.9 trillion. that, when given to AI, free up recruiters’ With its vast amount of underutilized time to focus on what matters: the human data, HR has the potential to lead digital interaction between candidates and com- transformation and drive business value pany personnel. And that can be done at with AI-powered solutions. scale with an intelligent chatbot trained to conduct preliminary screening and RECRUITING manage the interview process. Recruiting is the most well-developed The interview process is rife with bias, area of AI in HR, for several reasons. The and many of these tools help reduce race, vast size of the recruiting funnel—from gender, education and age biases. A key job ad impressions, careers site visits, caveat is that an AI-based system can only applications and hires—offers a wealth return results as good as the data and the of data that AI-powered tools can learn training put into it. For instance, if your from. Additionally, the recent talent employee population leans toward certain shortage in a strong economy means that profiles, algorithms based on matching the NOVEMBER 2019 companies are paying closer attention to characteristics of current employees with candidate experience and investing more candidates will not help increase diversity. PRODUCED BY EXECUTIVE NETWORK in recruiting tools to improve it. Finally, However, with oversight, AI can correct HR PEOPLE STRATEGY shortening employee tenure has driven hidden biases. (See the final section of this WRITTEN BY companies to seek out ways to make paper for a discussion on the ethics of AI.) Josh Bersin 1 HR People + Strategy’s White Paper Series IN FOCUS | AI in HR: The New Frontier ©HR People + Strategy 2019. hrps.org INHR PEOPLE + FOCUSSTRATEGY’S WHITE PAPER SERIES Recruiting Process AI Solution Candidate Selection Screen candidate resumes, rediscover talent from existing pools Sourcing Surface appropriate candidates from online profiles, facilitate referrals Recruitment Marketing Automated job ad placement and bidding Screening Natural language processing (NLP) based chatbots to screen candidates, re-engage talent pools Interviewing Video interview analytics, chatbot-enabled scheduling, interview process analytics and predictions Assessment Assessments based on skills and cultural fit Diversity and Inclusion Identify and reduce bias in job descriptions, candidate communications, and interview patterns LEARNING AND EMPLOYEE DEVELOPMENT matching, virtual reality (VR) training Talent availability, rapid technology and micro-learning help provide em- change, and shifting candidate behav- ployees with the knowledge they need ior are some of the factors contributing to succeed on the job. to companies’ increased focus on reten- Internal mobility is a growing area AI-powered tools tion through reskilling employees, pro- of focus, and some companies are hav- facilitate employee viding better learning and onboarding ing success using AI-based systems growth through that look at job experience inside and programs, and developing top employ- automated matching ees into leaders. outside the company, and match this An Edelman study found that 59 per- information against open positions, of inferred skills, cent of global employees fear job loss offering employees guidance on where recommending due to a lack of retraining and skills. they might go next. adjacent skills, and Companies that invest more in “learn- ing in the flow of work” are well poised CORE HR AND SERVICE DELIVERY serving up relevant to attract and retain employees, as well learning content. as to ensure their business stays com- Core HR petitive: 62 percent of global execu- Time tracking, payroll, expense reporting tives believe they will need to retrain and benefits administration are benefit- or replace more than a quarter of their ing from AI-powered analysis, employee workforce by 2023 due to advancing nudges and predictive capabilities. An automation and digitization. important area is compensation. AI-powered tools facilitate employee PayScale’s 2019 study of compensation growth through automated matching of practices found that less than 40 percent inferred skills, recommending adjacent of companies do any compensation eq- skills, and serving up relevant learning uity analysis for race or gender. With a content. Additionally, AI-based coach massive set of pressures facing companies Function AI Solution Learning Learning/training matching, learning content delivery Coaching/Mentoring Coach/mentor matching Internal Mobility Skills matching and recommendations against openings 2 HR People + Strategy’s White Paper Series IN FOCUS | AI in HR: The New Frontier ©HR People + Strategy 2019. hrps.org INHR PEOPLE + FOCUSSTRATEGY’S WHITE PAPER SERIES right now for gender pay equity reporting, AI IN ENGAGEMENT, PRODUCTIVITY it’s prime time for AI-based tools to help AND WELLNESS companies determine fair pay and ensure all employees are being paid fairly. Employee Engagement and Compensation is a tricky topic because Feedback Systems there are so many objective factors that In the evolution of employee engagement should determine pay: education, experi- to employee experience, companies now ence, work responsibilities, performance consider every aspect of how an employ- ratings and market competition. AI can ee engages with his or her job, the com- help determine fair pay in a way that pany and colleagues. eliminates subjective biases like gender, The annual survey has gone by the race, age and favoritism and that identifies wayside in favor of continuous feedback potential inequities. in the form of pulse surveys and other feedback systems that can be analyzed HR Service Delivery with NLP-based tools. Such tools can sur- With the trend toward employee experi- face key themes, help diagnose manager ence, employers now have to design HR effectiveness and detect risks stemming services relating to pay, benefits, expens- from discrimination or harassment. es and paid time off (PTO) requests for The largest employee audiences expecting consum- Organizational Network Analysis organizations have er-grade experiences in the workplace. The highly networked workplace has built employee service The largest organizations have built vast amounts of data from e-mail, calen- employee service centers and self-ser- daring, messaging platforms and motion centers and self-ser vice vice portals that merge HR, IT and other sensors that can be fed into systems using portals that merge HR, workplace services like badging, commut- organizational network analysis (ONA). IT and other workplace er passes and gym discounts. This technology can help companies AI-based chatbots already have a foot- identify strong influencers, patterns of services like badging, hold with customer service organizations: strong or weak teamwork, micro-man- commut er passes and 37 percent of service leaders are either pi- agement and nondiverse or noninclusive gym discounts. loting or using artificial intelligence bots communications. and virtual customer assistants (VCAs), The applications of ONA are as vast and 67 percent of those leaders believe as the data available. By analyzing time they are high-value tools in the contact spent in meetings, it can help eliminate center. time wasted in unproductive meetings. Chatbots based on natural language Analyzing the behavior of sales teams processing (NLP) have the ever-in- against performance can help identify creasing intelligence to answer routine new sales processes. Looking at motion employee questions and assist with em- patterns from embedded sensors can cre- ployee journeys, freeing up HR admin- ate more efficient processes and realistic istrators to focus on more complex tasks. guidelines based on data versus hunches. HR Area AI Solution Compensation Pay equity, recommended salary adjustments and raises HR Service Delivery AI-based chatbots for routine employee questions, employee journey assistance, process automation for HR transactions 3 HR People + Strategy’s White Paper Series IN FOCUS | AI in HR: The New Frontier ©HR People + Strategy 2019. hrps.org INHR
Recommended publications
  • Powering Inclusion: Artificial Intelligence and Assistive Technology
    POLICY BRIEF MARCH 2021 Powering Inclusion: Artificial Intelligence and Assistive Technology Assistive technology (AT) is broadly defined as any equipment, product or service that can make society more inclusive. Eye- glasses, hearing aids, wheelchairs or even some mobile applica- tions are all examples of AT. This briefing explores the power of Key facts using Artificial Intelligence (AI) to enhance the design of current and future AT, as well as to increase its reach. The UN Convention on the Context Rights of Persons with Dis- Globally, over 1 billion people are currently in need of AT. Lack of access to basic AT excludes individuals, reduces their ability to live independent abilities (UNCRPD) estab- lives [3], and is a barrier to the realisation of the Sustainable Development lished AT provision as a Goals (SDGs) [2]. human right [1]. Advances in AI offer the potential to develop and enhance AT and gain new insights into the scale and nature of AT needs (although the risks of potential bias and discrimination in certain AI-based tools must also be Over 1 billion people are acknowledged). In June 2019, the Conference of State Parties to the UN currently in need of AT. Convention on the Rights of Persons with Disabilities (CRPD) recognized that AI has the potential to enhance inclu- By 2050, this number is sion, participation, and independence for people with disabilities [5]. AI- predicted to double [2]. enabled tools – such as predictive text, visual recognition, automatic speech- to-text transcription, speech recognition, and virtual assistants - have experi- enced great advances in the last few years and are already being Only 10% of those who used by people with vision, hearing, mobility and learning impairments.
    [Show full text]
  • An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation
    An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation Bijoyan Das Sarit Chakraborty Student Member, IEEE Member, IEEE, Kolkata, India Abstract – With the rapid growth of Text sentiment tickets. Although this is a very trivial problem, text analysis, the demand for automatic classification of classification can be used in many different areas as electronic documents has increased by leaps and bound. follows: The paradigm of text classification or text mining has been the subject of many research works in recent time. Most of the consumer based companies use In this paper we propose a technique for text sentiment sentiment classification to automatically classification using term frequency- inverse document generate reports on customer feedback. It is an frequency (TF-IDF) along with Next Word Negation integral part of CRM. [2] (NWN). We have also compared the performances of In medical science, text classification is used to binary bag of words model, TF-IDF model and TF-IDF analyze and categorize reports, clinical trials, with ‘next word negation’ (TF-IDF-NWN) model for hospital records etc. [2] text classification. Our proposed model is then applied Text classification models are also used in law on three different text mining algorithms and we found on the various trial data, verdicts, court the Linear Support vector machine (LSVM) is the most transcripts etc. [2] appropriate to work with our proposed model. The Text classification models can also be used for achieved results show significant increase in accuracy Spam email classification. [7] compared to earlier methods. In this paper we have demonstrated a study on the three different techniques to build models for text I.
    [Show full text]
  • Extraction of Predictive Document Spans with Neural Attention
    SpanPredict: Extraction of Predictive Document Spans with Neural Attention Vivek Subramanian, Matthew Engelhard, Samuel Berchuck, Liqun Chen, Ricardo Henao, and Lawrence Carin Duke University {vivek.subramanian, matthew.engelhard, samuel.berchuck, liqun.chen, ricardo.henao, lcarin}@duke.edu Abstract clinical notes, for example, attributing predictions to specific note content assures clinicians that the In many natural language processing applica- tions, identifying predictive text can be as im- model is not relying on data artifacts that are not portant as the predictions themselves. When clinically meaningful or generalizable. Moreover, predicting medical diagnoses, for example, this process may illuminate previously unknown identifying predictive content in clinical notes risk factors that are described in clinical notes but not only enhances interpretability, but also al- not captured in a structured manner. Our work is lows unknown, descriptive (i.e., text-based) motivated by the problem of autism spectrum dis- risk factors to be identified. We here formal- order (ASD) diagnosis, in which many early symp- ize this problem as predictive extraction and toms are behavioral rather than physiologic, and address it using a simple mechanism based on linear attention. Our method preserves dif- are documented in clinical notes using multiple- ferentiability, allowing scalable inference via word descriptions, not individual terms. Morever, stochastic gradient descent. Further, the model extended and nuanced descriptions are important decomposes predictions into a sum of contri- in many common document classification tasks, for butions of distinct text spans. Importantly, we instance, the scoring of movie or food reviews. require only document labels, not ground-truth Identifying important spans of text is a recurring spans.
    [Show full text]
  • Alternate Keypad Designs and Novel Predictive Disambiguation Methods
    Improved Text Entry for Mobile Devices: Alternate Keypad Designs and Novel Predictive Disambiguation Methods A DISSERTATION SUBMITTED TO THE COLLEGE OF COMPUTER SCIENCE OF NORTHEASTERN UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY By Jun Gong October 2007 ©Jun Gong, 2007 ALL RIGHTS RESERVED Acknowledgements I would like to take this chance to truly thank all the people who have supported me throughout my years as a graduate student. Without their help, I do not think I could have achieved one of my life-long goals and dreams of earning a doctorate, and would not be where I am today. First of all, I have to express my sincerest appreciation to my advisors Peter Tarasewich and Harriet Fell. I shall never forget these four years when I worked with such distinguished researchers and mentors. Thank you for always putting your trust and belief in me, and for your guidance and insights into my research. I also have to thank my other thesis committee members: Professors Scott MacKenzie, Carole Hafner, and Javed Aslam. I would not be where I am now without the time and effort you spent helping me complete my dissertation work. I am most indebted to my beloved parents, Pengchao Gong and Baolan Xia. I have been away from you for such a long time, and could not always be there when I should have. But in return, you have still given me the warmest care and greatest encouragement. I am forever grateful that you have given me this opportunity, and will continue to do my best to make you proud.
    [Show full text]
  • Graph Neural Networks for Natural Language Processing: a Survey
    GRAPH NEURAL NETWORKS FOR NLP: A SURVEY Graph Neural Networks for Natural Language Processing: A Survey ∗ Lingfei Wu [email protected] JD.COM Silicon Valley Research Center, USA ∗ Yu Chen [email protected] Rensselaer Polytechnic Institute, USA y Kai Shen [email protected] Zhejiang University, China Xiaojie Guo [email protected] JD.COM Silicon Valley Research Center, USA Hanning Gao [email protected] Central China Normal University, China z Shucheng Li [email protected] Nanjing University, China Jian Pei [email protected] Simon Fraser University, Canada Bo Long [email protected] JD.COM, China Abstract Deep learning has become the dominant approach in coping with various tasks in Natural Language Processing (NLP). Although text inputs are typically represented as a sequence of tokens, there is a rich variety of NLP problems that can be best expressed with a graph structure. As a result, there is a surge of interests in developing new deep learning techniques on graphs for a large number of NLP tasks. In this survey, we present a comprehensive overview on Graph Neural Networks (GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, which systematically organizes existing research of GNNs for NLP along three axes: graph construction, graph representation learning, and graph based encoder-decoder models. We further introduce a large number of NLP applications that are exploiting the power of GNNs and summarize the corresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discuss various outstanding challenges for making the full use of GNNs for NLP as well as future research arXiv:2106.06090v1 [cs.CL] 10 Jun 2021 directions.
    [Show full text]
  • Linguistics 1
    Linguistics 1 Purpose of the PhD Program LINGUISTICS The goal of the linguistics doctoral program is to prepare graduates to design and conduct original, empirically based research within a Linguistics is the study of all aspects of human language: how languages theoretical framework. Doctoral students prepare for careers in academic make it possible for us to construe another person's ideas and feelings; research and teaching or applied work in industry or other organizations. how and why languages are similar and different; how we develop We encourage doctoral students to begin engaging in research projects different styles and dialects; what will be required for computers to early, as these will contribute to developing the research program that understand and produce spoken language; and how languages are used will lead to the thesis project. Early projects not only lead to preliminary in everyday communication as well as in formal settings. Linguists exam topics and/or publishable papers, but also enable students to pilot try to figure out what it is that speakers know and do by observing the methods that will be usable for the dissertation project. Early projects structure of languages, the way children learn language, slips of the may be extensions of coursework and may involve a faculty advisor other tongue, conversations, storytelling, the acoustics of sound waves and the than the thesis advisor. way people's brains react when they hear speech or read. Linguists also reconstruct prehistoric languages, and try to deduce the principles behind Doctoral students complete a core of required courses that provide their evolution into the thousands of languages of the world today.
    [Show full text]
  • Corpus-Based Language Technology for Indigenous and Minority Languages
    Corpus-based language technology for indigenous and minority languages Kevin Scannell Saint Louis University 5 October 2015 Background ● I was born in the US, but I speak Irish ● Trained as a mathematician ● Began developing tools for Irish in the 90s ● No corpora for doing statistical NLP ● So I built my own with a crawler ● Crúbadán = crawling thing, from crúb=paw Web as Linguistic Archive ● Billions of unique resources, +1 ● Raw data only, no annotations, -1 ● > 2100 languages represented, +1 ● Very little material in endangered languages, -1 ● Full text searchable, +1 ● Can't search archive by language, -1 ● Snapshots archived periodically, +1 ● Resources removed or changed at random, -1 ● Free to download, +1 ● Usage rights unclear for vast majority of resources, -1 An Crúbadán: History ● First attempt at crawling Irish web, Jan 1999 ● 50M words of Welsh for historical dict., 2004 ● ~150 minority languages, 2004-2007 ● ~450 languages for WAC3, 2007 ● Unfunded through 2011 ● Search for “all” languages, started c. 2011 How many languages? ● Finishing a 3-year NSF project ● Phase one: aggressively seek out new langs ● Phrase two: produce free+usable resources ● Current total: 2140 ● At least 200 more queued for training ● 2500? 3000? Design principles ● Orthographies, not languages ● Labelled by BCP-47 codes ● en, chr, sr-Latn, de-AT, fr-x-nor, el-Latn-x-chat ● Real, running texts (vs. word lists, GILT) ● Get “everything” for small languages ● Large samples for English, French, etc. How we find languages ● Lots of manual web searching!
    [Show full text]
  • Predictive Text System for Bahasa with Frequency, N-Gram, Probability Table and Syntactic Using Grammar
    Predictive Text System for Bahasa with Frequency, n-gram, Probability Table and Syntactic using Grammar Derwin Suhartono, Garry Wong, Polim Kusuma and Silviana Saputra Computer Science Department, Bina Nusantara University, K H. Syahdan 9, Jakarta, Indonesia Keywords: Predictive Text, Word Prediction, n-gram, Prediction, KSPC, Keystrokes Saving. Abstract: Predictive text system is an alternative way to improve human communication, especially in matter of typing. Originally, predictive text system was intended for people who have flaws in verbal and motor. This system is aimed to all people who demands speed and accuracy in typing a document. There were many similar researches which develop this system that had their own strengths and weaknesses. This research attempts to develop the algorithm for predictive text system by combining four methods from previous researches and focus only in Bahasa (Indonesian language). The four methods consist of frequency, n-gram, probability table, and syntactic using grammar. Frequency method is used to rank words based on how many times the words were typed. Probability table is a table designed for storing data such as predefined phrases and trained data. N-gram is used to train data so that it is able to predict the next word based on previous word. And syntactic using grammar will predict the next word based on syntactic relationship between previous word and next word. By using this combination, user can reduce the keystroke up to 59% in which the average keystrokes saving is about 50%. 1 INTRODUCTION verbal and motor (Vitoria and Abascal, 2006). Over time, the usage of this system began to change and Conventional process of typing documents using a now is aimed to all people who demands speed and typewriter has become obsolete due to technological accuracy in typing a document.
    [Show full text]
  • Voice Typing: a New Speech Interaction Model for Dictation on Touchscreen Devices
    Voice Typing: A New Speech Interaction Model for Dictation on Touchscreen Devices †‡ † † Anuj Kumar , Tim Paek , Bongshin Lee † ‡ Microsoft Research Human-Computer Interaction Institute, One Microsoft Way Carnegie Mellon University Redmond, WA 98052, USA Pittsburgh, PA 15213, USA {timpaek, bongshin}@microsoft.com [email protected] [12] and other ergonomic issues such as the “fat finger ABSTRACT problem” [10]. Automatic dictation using speech Dictation using speech recognition could potentially serve recognition could serve as a natural and efficient mode of as an efficient input method for touchscreen devices. input, offering several potential advantages. First, speech However, dictation systems today follow a mentally throughput is reported to be at least three times faster than disruptive speech interaction model: users must first typing on a hardware QWERTY keyboard [3]. Second, formulate utterances and then produce them, as they would compared to other text input methods, such as handwriting with a voice recorder. Because utterances do not get or typing, speech has the greatest flexibility in terms of transcribed until users have finished speaking, the entire screen size. Finally, as touchscreen devices proliferate output appears and users must break their train of thought to throughout the world, speech input is (thus far) widely verify and correct it. In this paper, we introduce Voice considered the only plausible modality for the 800 million Typing, a new speech interaction model where users’ or so non-literate population [26]. utterances are transcribed as they produce them to enable real-time error identification. For fast correction, users However, realizing the potential of dictation critically leverage a marking menu using touch gestures.
    [Show full text]
  • Proceedings of the 55Th Annual Meeting of the Association For
    ComputEL-3 Proceedings of the 3rd Workshop on the Use of Computational Methods in the Study of Endangered Languages Volume 1 (Papers) February 26–27, 2019 Honolulu, Hawai‘i, USA Support: c 2019 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN 978-1-950737-18-5 ii Preface These proceedings contain the papers presented at the 3rd Workshop on the Use of Computational Methods in the Study of Endangered languages held in Hawai’i at Manoa,¯ February 26–27, 2019. As the name implies, this is the third workshop held on the topic—the first meeting was co-located with the ACL main conference in Baltimore, Maryland in 2014 and the second one in 2017 was co-located with the 5th International Conference on Language Documentation and Conservation (ICLDC) at the University of Hawai‘i at Manoa.¯ The workshop covers a wide range of topics relevant to the study and documentation of endangered languages, ranging from technical papers on working systems and applications, to reports on community activities with supporting computational components. The purpose of the workshop is to bring together computational researchers, documentary linguists, and people involved with community efforts of language documentation and revitalization to take part in both formal and informal exchanges on how to integrate rapidly evolving language processing methods and tools into efforts of language description, documentation, and revitalization. The organizers are pleased with the range of papers, many of which highlight the importance of interdisciplinary work and interaction between the various communities that the workshop is aimed towards.
    [Show full text]
  • Experts Doubt Ethical AI Design Will Be Broadly Adopted As the Norm Within the Next Decade
    FOR RELEASE June 16, 2021 Experts Doubt Ethical AI Design Will Be Broadly Adopted as the Norm Within the Next Decade A majority worries that the evolution of artificial intelligence by 2030 will continue to be primarily focused on optimizing profits and social control. They also cite the difficulty of achieving consensus about ethics. Many who expect progress say it is not likely within the next decade. Still, a portion celebrate coming AI breakthroughs that will improve life BY Lee Rainie, Janna Anderson and Emily A. Vogels FOR MEDIA OR OTHER INQUIRIES: Lee Rainie, Director, Internet and Technology Research Janna Anderson, Director, Elon University’s Imagining the Internet Center Haley Nolan, Communications Associate 202.419.4372 www.pewresearch.org RECOMMENDED CITATION Pew Research Center, June 16, 2021. “Experts Doubt Ethical AI Design Will Be Broadly Adopted as the Norm in the Next Decade” 1 PEW RESEARCH CENTER About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping America and the world. It does not take policy positions. It conducts public opinion polling, demographic research, content analysis and other data-driven social science research. The Center studies U.S. politics and policy; journalism and media; internet, science and technology; religion and public life; Hispanic trends; global attitudes and trends; and U.S. social and demographic trends. All of the center’s reports are available at www.pewresearch.org. Pew Research Center is a subsidiary of The Pew Charitable Trusts, its primary funder. For this project, Pew Research Center worked with Elon University’s Imagining the Internet Center, which helped conceive the research and collect and analyze the data.
    [Show full text]
  • Weighted Finite-State Methods for Spell-Checking and Correction Tommi a Pirinen
    Department of Modern Languages 2014 Weighted Finite-State Methods for Spell-Checking and Correction Tommi A Pirinen Academic dissertation to be publicly discussed, by due permission of the Fac- ulty of Arts at the University of Helsinki in auditorium XII (in lecture room PIII), on the 28th of February at 12 o’clock. University of Helsinki Finland Supervisor Krister Lindén, Helsingin yliopisto, Finland Pre-examiners Prof. Mikel L. Forcada, Universitat d’Alacant, Spain Prof. Lars Borin, Göteborgs universitet, Sweden Opponent Prof. Lars Borin, Göteborgs universitet, Sweden Custos Prof. Lauri Carlson, Helsingin yliopisto, Finland Contact information Department of Modern Languages P.O. Box 24 (Unioninkatu 40) FI-00014 University of Helsinki Finland Email address: [email protected] URL: http://www.helsinki.fi/ Telephone: +358 9 1911, telefax: +358 9 191 51120 Copyright © 2014 Tommi A Pirinen http://creativecommons.org/licenses/by-nc-nd/3.0/deed ISBN 978-952-10-9694-5 (printed) ISBN 978-952-10-9695-2 (PDF) Computing Reviews (1998) Classification: F.1.1, I.2.7, I.7.1 Helsinki 2014 Picaset Oy Weighted Finite-State Methods for Spell-Checking and Correction Tommi A Pirinen Department of Modern Languages P.O. Box 24, FI-00014 University of Helsinki, Finland [email protected] http://www.helsinki.fi/%7etapirine PhD Thesis, Series of Publications, 2014 Helsinki, January 2014, 94 pages ISBN 978-952-10-9694-5 (printed) ISBN 978-952-10-9695-2 (PDF) Abstract This dissertation is a large-scale study of spell-checking and correction using finite-state technology. Finite-state spell-checking is a key method for handling morphologically complex languages in a computationally efficient manner.
    [Show full text]