Voice Typing: a New Speech Interaction Model for Dictation on Touchscreen Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nicolae Duta Natural Language Understanding and Prediction
Natural Language Understanding and Prediction Technologies Nicolae Duta Cloud ML @ Microsoft 1 IJCAI 2015 Tutorial Outline • Voice and language technologies: history, examples and technological challenges • Short intro to ASR: modeling, architecture, analytics • Language prediction (aka modeling) • Natural Language Understanding • Supervised learning approaches: training & annotation issues • Semi-supervised learning approaches • Parsers & hybrid models, multilingual models • Client-server architectures, dialog & semantic equations • Human interaction with voice & language technologies • Semantic web-search • Disclosure 2 IJCAI 2015 Tutorial Deployed language technologies Most applications that translate some signal into text employ a Bayesian approach: arg max P(sentence | signal) sentence arg max P(signal | sentence ) P(sentence ) sentence Applications • Speech recognition • Optical character recognition • Handwriting recognition • Machine translation • Spelling correction • Word/sentence auto completion 3 IJCAI 2015 Tutorial Technologies based on voice input • Technologies that use spoken input for requesting information, web navigation or command execution – DA systems: Nuance (bNuance+PhoneticSystems), BBN/Nortel, TellMe/Microsoft, Jingle, Google, AT&T, IBM (mid 1990s) – Dictation/speech to text systems: Dragon (mid1990s) – TV close captioning BBN/NHK (early 2000s) – Automated attendant & Call routing: AT&T, BBN, Nuance, IBM (early 2000s) – Form-filling directed dialog (flight reservations) (early 2000s) – Personal assistants/Full -
Powering Inclusion: Artificial Intelligence and Assistive Technology
POLICY BRIEF MARCH 2021 Powering Inclusion: Artificial Intelligence and Assistive Technology Assistive technology (AT) is broadly defined as any equipment, product or service that can make society more inclusive. Eye- glasses, hearing aids, wheelchairs or even some mobile applica- tions are all examples of AT. This briefing explores the power of Key facts using Artificial Intelligence (AI) to enhance the design of current and future AT, as well as to increase its reach. The UN Convention on the Context Rights of Persons with Dis- Globally, over 1 billion people are currently in need of AT. Lack of access to basic AT excludes individuals, reduces their ability to live independent abilities (UNCRPD) estab- lives [3], and is a barrier to the realisation of the Sustainable Development lished AT provision as a Goals (SDGs) [2]. human right [1]. Advances in AI offer the potential to develop and enhance AT and gain new insights into the scale and nature of AT needs (although the risks of potential bias and discrimination in certain AI-based tools must also be Over 1 billion people are acknowledged). In June 2019, the Conference of State Parties to the UN currently in need of AT. Convention on the Rights of Persons with Disabilities (CRPD) recognized that AI has the potential to enhance inclu- By 2050, this number is sion, participation, and independence for people with disabilities [5]. AI- predicted to double [2]. enabled tools – such as predictive text, visual recognition, automatic speech- to-text transcription, speech recognition, and virtual assistants - have experi- enced great advances in the last few years and are already being Only 10% of those who used by people with vision, hearing, mobility and learning impairments. -
Phillips, Michael Poster
creation of industries Michael Phillips • CEO, Sense • Founder, Vlingo • Co-founder, SpeechWorks BIO: Mike Phillips is the CEO of Sense, a Cambridge-based company developing intelligent devices and applications for the home. Mike previously founded SpeechWorks in 1994, which applied emerging speech recognition technology to the call center industry and had an IPO in August 2000. In 2006, Mike founded Vlingo which developed the first voice-based virtual assistant applications for mobile phones. Vlingo had both a successful consumer facing application, and also powered virtual assistants for hundreds of millions of phones, including worldwide support for the Samsung Galaxy S phones. Vlingo was acquired in 2012 and Mike and others from Vlingo formed Sense in 2013. Mike got his start as an electrical engineer undergrad at CMU before moving on to research roles in the early days of speech recognition at CMU and MIT. ABSTRACT: From Impossible Research Projects to Creation of Industries In 1980, I was an undergrad at CMU and wandered into a professors office looking for a research project. That led to me joining a small group of people working on what seemed like an impossible problem: making computers which could understand human speech. In fact, it turns out it was an impossible problem at the time, but a lot has changed since then! A number of members of that small team have been instrumental in creating an industry around machine learning and conversation systems. Most of the successful speech recognition companies have been based on core teams with direct or indirect ties to CMU. I’ll discuss my path to starting multiple companies in the speech and natural language processing world and also how the core of what we built is now being used across multiple industries. -
An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation
An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation Bijoyan Das Sarit Chakraborty Student Member, IEEE Member, IEEE, Kolkata, India Abstract – With the rapid growth of Text sentiment tickets. Although this is a very trivial problem, text analysis, the demand for automatic classification of classification can be used in many different areas as electronic documents has increased by leaps and bound. follows: The paradigm of text classification or text mining has been the subject of many research works in recent time. Most of the consumer based companies use In this paper we propose a technique for text sentiment sentiment classification to automatically classification using term frequency- inverse document generate reports on customer feedback. It is an frequency (TF-IDF) along with Next Word Negation integral part of CRM. [2] (NWN). We have also compared the performances of In medical science, text classification is used to binary bag of words model, TF-IDF model and TF-IDF analyze and categorize reports, clinical trials, with ‘next word negation’ (TF-IDF-NWN) model for hospital records etc. [2] text classification. Our proposed model is then applied Text classification models are also used in law on three different text mining algorithms and we found on the various trial data, verdicts, court the Linear Support vector machine (LSVM) is the most transcripts etc. [2] appropriate to work with our proposed model. The Text classification models can also be used for achieved results show significant increase in accuracy Spam email classification. [7] compared to earlier methods. In this paper we have demonstrated a study on the three different techniques to build models for text I. -
Extraction of Predictive Document Spans with Neural Attention
SpanPredict: Extraction of Predictive Document Spans with Neural Attention Vivek Subramanian, Matthew Engelhard, Samuel Berchuck, Liqun Chen, Ricardo Henao, and Lawrence Carin Duke University {vivek.subramanian, matthew.engelhard, samuel.berchuck, liqun.chen, ricardo.henao, lcarin}@duke.edu Abstract clinical notes, for example, attributing predictions to specific note content assures clinicians that the In many natural language processing applica- tions, identifying predictive text can be as im- model is not relying on data artifacts that are not portant as the predictions themselves. When clinically meaningful or generalizable. Moreover, predicting medical diagnoses, for example, this process may illuminate previously unknown identifying predictive content in clinical notes risk factors that are described in clinical notes but not only enhances interpretability, but also al- not captured in a structured manner. Our work is lows unknown, descriptive (i.e., text-based) motivated by the problem of autism spectrum dis- risk factors to be identified. We here formal- order (ASD) diagnosis, in which many early symp- ize this problem as predictive extraction and toms are behavioral rather than physiologic, and address it using a simple mechanism based on linear attention. Our method preserves dif- are documented in clinical notes using multiple- ferentiability, allowing scalable inference via word descriptions, not individual terms. Morever, stochastic gradient descent. Further, the model extended and nuanced descriptions are important decomposes predictions into a sum of contri- in many common document classification tasks, for butions of distinct text spans. Importantly, we instance, the scoring of movie or food reviews. require only document labels, not ground-truth Identifying important spans of text is a recurring spans. -
Alternate Keypad Designs and Novel Predictive Disambiguation Methods
Improved Text Entry for Mobile Devices: Alternate Keypad Designs and Novel Predictive Disambiguation Methods A DISSERTATION SUBMITTED TO THE COLLEGE OF COMPUTER SCIENCE OF NORTHEASTERN UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY By Jun Gong October 2007 ©Jun Gong, 2007 ALL RIGHTS RESERVED Acknowledgements I would like to take this chance to truly thank all the people who have supported me throughout my years as a graduate student. Without their help, I do not think I could have achieved one of my life-long goals and dreams of earning a doctorate, and would not be where I am today. First of all, I have to express my sincerest appreciation to my advisors Peter Tarasewich and Harriet Fell. I shall never forget these four years when I worked with such distinguished researchers and mentors. Thank you for always putting your trust and belief in me, and for your guidance and insights into my research. I also have to thank my other thesis committee members: Professors Scott MacKenzie, Carole Hafner, and Javed Aslam. I would not be where I am now without the time and effort you spent helping me complete my dissertation work. I am most indebted to my beloved parents, Pengchao Gong and Baolan Xia. I have been away from you for such a long time, and could not always be there when I should have. But in return, you have still given me the warmest care and greatest encouragement. I am forever grateful that you have given me this opportunity, and will continue to do my best to make you proud. -
Graph Neural Networks for Natural Language Processing: a Survey
GRAPH NEURAL NETWORKS FOR NLP: A SURVEY Graph Neural Networks for Natural Language Processing: A Survey ∗ Lingfei Wu [email protected] JD.COM Silicon Valley Research Center, USA ∗ Yu Chen [email protected] Rensselaer Polytechnic Institute, USA y Kai Shen [email protected] Zhejiang University, China Xiaojie Guo [email protected] JD.COM Silicon Valley Research Center, USA Hanning Gao [email protected] Central China Normal University, China z Shucheng Li [email protected] Nanjing University, China Jian Pei [email protected] Simon Fraser University, Canada Bo Long [email protected] JD.COM, China Abstract Deep learning has become the dominant approach in coping with various tasks in Natural Language Processing (NLP). Although text inputs are typically represented as a sequence of tokens, there is a rich variety of NLP problems that can be best expressed with a graph structure. As a result, there is a surge of interests in developing new deep learning techniques on graphs for a large number of NLP tasks. In this survey, we present a comprehensive overview on Graph Neural Networks (GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, which systematically organizes existing research of GNNs for NLP along three axes: graph construction, graph representation learning, and graph based encoder-decoder models. We further introduce a large number of NLP applications that are exploiting the power of GNNs and summarize the corresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discuss various outstanding challenges for making the full use of GNNs for NLP as well as future research arXiv:2106.06090v1 [cs.CL] 10 Jun 2021 directions. -
Siri App for Android Phone
Siri app for android phone Continue If you watched last week's iPhone 4S ad from your Android phone and went a little green with envy when Siri, iOS's new voice-recognition personal assistant, was announced and demoted on stage, shake up. You have a lot of great voice recognition apps to choose from on Android that can help you keep up with friends, search the weather, find local businesses, and more. Here's a look at your options. If you haven't looked into voice recognition apps on Android before, you may be wondering how many apps get the job done. None of the apps currently available for Android are as well integrated with OS as Siri with iOS (sorry), but some are closer than others, and you can bet that they will all be updated and improved now that Siri is available for iOS. Best of all, they're all free. The one you already have: Google Voice ActionsIf you have an Android phone, you already have Google Voice Actions for Android installed. When everyone got their first look at Siri on the iPhone 4S, most people jumped at the assumption that Siri was just the voice of action for iOS. It's not - Siri does more than Voie Actions, but Voice Actions is the closest that Android users have to a voice assistant. Pros: Voice action can control a large swath of Android features. You can post phone calls, listen to music by the name of a track, artist, or album, send SMS or emails, get driving and step-by-step navigation, search the web, and more. -
AI in HR: the New Frontier INTRODUCTION the Robots Have Arrived
INHR PEOPLE + FOCUSSTRATEGY’S WHITE PAPER SERIES AI in HR: The New Frontier INTRODUCTION The robots have arrived. Only they don’t look like robots. AI- and machine learning-based technology is embedded in the tools you likely interact with every day—navigation apps; predictive text in e-mail and messaging; digital assistants like Alexa and Siri; and recommendation engines on Netflix, YouTube and Spotify. Today, AI-powered technology seamlessly integrates into the things we already do—and it’s poised to do the same for HR. Since AI-based solutions predict, recommend and communicate based on data, AI has the opportunity to transform HR practices in areas where there is adequate data and where that data can be utilized to create greater efficiency, communicate at scale, provide recommendations and predict outcomes. Many companies already have a vast amount of data on candidates and employees that can help them source, assess, hire, train, develop and pay people more efficiently with the application of AI-driven tools. he International Data Corporation smarter hiring choices that ensure quali- T(IDC) estimates that worldwide spend- ty hires while eliminating hidden biases. ing on AI systems will reach $35.8 billion The recruiting process is filled with in 2019 and $79 billion by 2022. And Gart- numerous repeatable tasks such as re- ner estimates that, by 2022, AI-derived sume screening and interview scheduling business value will reach $3.9 trillion. that, when given to AI, free up recruiters’ With its vast amount of underutilized time to focus on what matters: the human data, HR has the potential to lead digital interaction between candidates and com- transformation and drive business value pany personnel. -
Idea Lab Session: Smartphone Tips & Tools for Success
Idea Lab Session: SmartPhone Tips & Tools for Success Thursday, February 28, 2013, 8:30 and 11:10 a.m. Randall Dean, MBA Author and Trainer Randall Dean Consulting and Training, LLC East Lansing, Mich. Randall Dean, the "totally obsessed" time management/PDA guy and email sanity expert and author of the recent Amazon email bestseller, “Taming the E-mail Beast: 45 Key Strategies for Managing Your E-mail Overload,” is a preferred source for speaking and training programs on advanced time management-using technology, managing the mess of email and information overload, and related topics including managing great meetings and ending office clutter. Randy has more than 20 years of experience using and teaching advanced principles of time management, project management, and personal organization. His popular keynote/breakout programs, "Finding an Extra Hour Every Day" and "Taming the E-mail Beast: Managing the Mess of E-mail and Info Overload" are great sessions for conference and association meetings. These programs combine humor with extraordinarily relevant and useful content and provide strategy- rich information on finding and saving time and taming the email beast at home and work. Session Description: Get organized and maximize your efficiency by learning amazing smartphone tips and tools during this interactive session. Top Three Session Ideas Tools or tips you learned from this session and can apply back at the office. 1. ______________________________________________________________________ 2. _______________________________________________________________________ -
Linguistics 1
Linguistics 1 Purpose of the PhD Program LINGUISTICS The goal of the linguistics doctoral program is to prepare graduates to design and conduct original, empirically based research within a Linguistics is the study of all aspects of human language: how languages theoretical framework. Doctoral students prepare for careers in academic make it possible for us to construe another person's ideas and feelings; research and teaching or applied work in industry or other organizations. how and why languages are similar and different; how we develop We encourage doctoral students to begin engaging in research projects different styles and dialects; what will be required for computers to early, as these will contribute to developing the research program that understand and produce spoken language; and how languages are used will lead to the thesis project. Early projects not only lead to preliminary in everyday communication as well as in formal settings. Linguists exam topics and/or publishable papers, but also enable students to pilot try to figure out what it is that speakers know and do by observing the methods that will be usable for the dissertation project. Early projects structure of languages, the way children learn language, slips of the may be extensions of coursework and may involve a faculty advisor other tongue, conversations, storytelling, the acoustics of sound waves and the than the thesis advisor. way people's brains react when they hear speech or read. Linguists also reconstruct prehistoric languages, and try to deduce the principles behind Doctoral students complete a core of required courses that provide their evolution into the thousands of languages of the world today. -
Corpus-Based Language Technology for Indigenous and Minority Languages
Corpus-based language technology for indigenous and minority languages Kevin Scannell Saint Louis University 5 October 2015 Background ● I was born in the US, but I speak Irish ● Trained as a mathematician ● Began developing tools for Irish in the 90s ● No corpora for doing statistical NLP ● So I built my own with a crawler ● Crúbadán = crawling thing, from crúb=paw Web as Linguistic Archive ● Billions of unique resources, +1 ● Raw data only, no annotations, -1 ● > 2100 languages represented, +1 ● Very little material in endangered languages, -1 ● Full text searchable, +1 ● Can't search archive by language, -1 ● Snapshots archived periodically, +1 ● Resources removed or changed at random, -1 ● Free to download, +1 ● Usage rights unclear for vast majority of resources, -1 An Crúbadán: History ● First attempt at crawling Irish web, Jan 1999 ● 50M words of Welsh for historical dict., 2004 ● ~150 minority languages, 2004-2007 ● ~450 languages for WAC3, 2007 ● Unfunded through 2011 ● Search for “all” languages, started c. 2011 How many languages? ● Finishing a 3-year NSF project ● Phase one: aggressively seek out new langs ● Phrase two: produce free+usable resources ● Current total: 2140 ● At least 200 more queued for training ● 2500? 3000? Design principles ● Orthographies, not languages ● Labelled by BCP-47 codes ● en, chr, sr-Latn, de-AT, fr-x-nor, el-Latn-x-chat ● Real, running texts (vs. word lists, GILT) ● Get “everything” for small languages ● Large samples for English, French, etc. How we find languages ● Lots of manual web searching!