Rutherford's Model Niels Bohr' Model of an Atom

Total Page:16

File Type:pdf, Size:1020Kb

Rutherford's Model Niels Bohr' Model of an Atom Rutherford’s Model Niels Bohr’ model of an atom Arvind Sir Luv Sir Suri Sir Theory Class: Tuesday Theory Class: Theory Class: Monday & Thursday (7pm) Wednesday & Saturday & Friday (7pm) MCQ Class: Saturday (7pm) MCQ Class: Tuesday (8pm) MCQ Class: Friday (8pm) (8pm) Daily Schedule Learning objectives: 1. Thomson’s model of an atom 2. Rutherford’s Model of an atom 3. Discovery of neutron 4. Niels Bohr’s model of an atom Quick Recap: ● Atoms are the fundamental particles of a matter. ● Electron was discovered by william crooke by cathode ray experiment. ● Thomson gave the idea of charge to mass ratio of electron by conducting the experiment on cathode ray tube. ● Anode rays or canal rays led to the discovery of proton by Goldstein Constituents Charge Mass Electrons -1.6022 × 10-19 C 9.1 × 10-31 kg Protons + 1.6022 × 10–19 C 1.67 × 10-27 kg Thomson Model: Postulates: 1. All atoms contain electrons. 2. The atom as a whole is neutral. The total positive charge and total negative charge must be equal. Drawback of this model. Can you answer this???? Rutherford’s 흰 particle scattering experiment: Rutherford conducted 흰-particles scattering experiments in 1909. Experimental setup: Can you answer why lead box was used along with alpha particle source? Observation: 1. Most of the alpha particles (99%) passes through it, without any deviation or deflection. 2. Some of the alpha particles were deflected through small angles. 3. Very few alpha particles were deflected by large angles and occasionally one out of 12000 alpha particles got deflected by 180o angle. Conclusion of Rutherford's scattering experiment: 1. Most of the space inside the atom is empty because most of the α-particles passed through the gold foil without getting deflected. 2. Very few particles were deflected from their path, indicating that the positive charge of the atom occupies very little space. 3. A very small fraction of α-particles were deflected by very large angles, indicating that all the positive charge and mass of the gold atom were concentrated in a very small volume within the atom. From the data he also calculated that the radius of the nucleus is about 105 times less than the radius of the atom. Rutherford's Nuclear Model Of Atom On the basis of his experiment, Rutherford put forward the model of an atom, which had the following features: 1. There is a positively charged centre in an atom called the nucleus. Nearly all the mass of an atom resides in the nucleus. 2. The electrons revolve around the nucleus in well-defined orbits. 3. The size of the nucleus is very small as compared to the size of the atom. Rutherford's alpha particle scattering experiment shows the presence of nucleus in the atom. It also gives the following important information about the nucleus of an atom: 1. Nucleus of an atom is positively charged. 2. Nucleus of an atom is very dense and hard. 3. Nucleus of an atom is very small as compared to the size of the 4. atom as a whole. Drawbacks: 1. According to classical mechanics, any charged body in motion under the influence of attractive forces should radiate energy continuously. If this is so, the electron will follow a spiral path and finally fall into the nucleus and the structure would collapse. This behaviour is never observed. 2. It says nothing about the electronic structure of atoms i.e. how the electrons are distributed around the nucleus and what are the energies of these electrons. Discovery of neutron: In 1932 Chadwick proved its existence. He observed that, when a beam of alpha particles (He2+) is incident on Beryllium (Be), a new type of particle was ejected. It had mass almost equal to that of a proton ( 1.674 ×10–27kg) and carried no charge. Atomic number (Z) ● It is equal to the number of protons present in an atom ● It also represents the number of electrons in a neutral atom ● Eg. number of protons in Na atom = 11 So atomic number (Z) of Na = 11 Mass Number (A) The elementary particles (protons and neutrons) present in the nucleus of an atom are collectively known as nucleons. Mass number (A) = Number of protons(Z) + Number of neutrons(n) Note: The general notation that is used to represent atomic number mass number of an element is: A X Z Where, X – symbol of element A – Mass number Z – atomic number Isotopes, Isobars, and Isotones: Question: K-40, Ca-40, Ar-40 are the examples of: a. Isotopes b. Isobars c. Isotones d. Isomers Question: K-40, Ca-40, Ar-40 are the examples of: a. Isotopes b. Isobars c. Isotones d. Isomers Question: How did the actual results of the gold foil experiment differ from the expected results? a. There was no difference between the expected and actual results. b. Rutherford expected particles to travel through the atoms, but instead, they ricocheted and rebounded in unexpected directions. c. The alpha particles caused the gold foil to undergo nuclear fusion instead of fission. d. None of these answers are correct. Question: How did the actual results of the gold foil experiment differ from the expected results? a. There was no difference between the expected and actual results. b. Rutherford expected particles to travel through the atoms, but instead, they ricocheted and rebounded in unexpected directions. c. The alpha particles caused the gold foil to undergo nuclear fusion instead of fission. d. None of these answers are correct. Question: Name the part of an atom discovered by Rutherford α-particles scattering experiment 1. Electrons 2. Protons 3. Neutrons 4. Nucleus Question: Name the part of an atom discovered by Rutherford α-particles scattering experiment 1. Electrons 2. Protons 3. Neutrons 4. Nucleus Next Session: 1. EM waves 2. Plank's Quantum theory and exp Join Vedantu JEE Telegram channel NOW! Assignments Notes Daily Update https://vdnt.in/JEEVedantu .
Recommended publications
  • Rutherford's Atomic Model
    CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4.2 Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes and Failures of the Bohr Model 4.6 Characteristic X-Ray Spectra and Atomic Number 4.7 Atomic Excitation by Electrons 4.1 The Atomic Models of Thomson and Rutherford Pieces of evidence that scientists had in 1900 to indicate that the atom was not a fundamental unit: 1) There seemed to be too many kinds of atoms, each belonging to a distinct chemical element. 2) Atoms and electromagnetic phenomena were intimately related. 3) The problem of valence (원자가). Certain elements combine with some elements but not with others, a characteristic that hinted at an internal atomic structure. 4) The discoveries of radioactivity, of x rays, and of the electron Thomson’s Atomic Model Thomson’s “plum-pudding” model of the atom had the positive charges spread uniformly throughout a sphere the size of the atom with, the newly discovered “negative” electrons embedded in the uniform background. In Thomson’s view, when the atom was heated, the electrons could vibrate about their equilibrium positions, thus producing electromagnetic radiation. Experiments of Geiger and Marsden Under the supervision of Rutherford, Geiger and Marsden conceived a new technique for investigating the structure of matter by scattering particles (He nuclei, q = +2e) from atoms. Plum-pudding model would predict only small deflections. (Ex. 4-1) Geiger showed that many particles were scattered from thin gold-leaf targets at backward angles greater than 90°.
    [Show full text]
  • 1 CHEM 1411 Chapter 5 Homework Answers 1. Which Statement Regarding the Gold Foil Experiment Is False?
    1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20th century. (b) Most of the alpha particles passed through the foil undeflected. (c) The alpha particles were repelled by electrons (d) It suggested the nuclear model of the atom. (e) It suggested that atoms are mostly empty space. 2. Ernest Rutherford's model of the atom did not specifically include the ___. (a) neutron (b) nucleus (c) proton (d) electron (e) electron or the proton 3. The gold foil experiment suggested ___. (a) that electrons have negative charges (b) that protons have charges equal in magnitude but opposite in sign to those of electrons (c) that atoms have a tiny, positively charged, massive center (d) the ratio of the mass of an electron to the charge of an electron (e) the existence of canal rays 4. Which statement is false? (a) Ordinary chemical reactions do not involve changes in nuclei. (b) Atomic nuclei are very dense. (c) Nuclei are positively charged. (d) Electrons contribute only a little to the mass of an atom (e) The nucleus occupies nearly all the volume of an atom. 2 5. In interpreting the results of his "oil drop" experiment in 1909, ___ was able to determine ___. (a) Robert Millikan; the charge on a proton (b) James Chadwick; that neutrons are also present in the nucleus (c) James Chadwick; that the masses of protons and electrons are nearly identical (d) Robert Millikan; the charge on an electron (e) Ernest Rutherford; the extremely dense nature of the nuclei of atoms 6.
    [Show full text]
  • A Computational Study of Ruthenium Metal Vinylidene Complexes: Novel Mechanisms and Catalysis
    A Computational Study of Ruthenium Metal Vinylidene Complexes: Novel Mechanisms and Catalysis David G. Johnson PhD University of York, Department of Chemistry September 2013 Scientist: How much time do we have professor? Professor Frink: Well according to my calculations, the robots won't go berserk for at least 24 hours. (The robots go berserk.) Professor Frink: Oh, I forgot to er, carry the one. - The Simpsons: Itchy and Scratchy land Abstract A theoretical investigation into several reactions is reported, centred around the chemistry, formation, and reactivity of ruthenium vinylidene complexes. The first reaction discussed involves the formation of a vinylidene ligand through non-innocent ligand-mediated alkyne- vinylidene tautomerization (via the LAPS mechanism), where the coordinated acetate group acts as a proton shuttle allowing rapid formation of vinylidene under mild conditions. The reaction of hydroxy-vinylidene complexes is also studied, where formation of a carbonyl complex and free ethene was shown to involve nucleophilic attack of the vinylidene Cα by an acetate ligand, which then fragments to form the coordinated carbonyl ligand. Several mechanisms are compared for this reaction, such as transesterification, and through allenylidene and cationic intermediates. The CO-LAPS mechanism is also examined, where differing reactivity is observed with the LAPS mechanism upon coordination of a carbonyl ligand to the metal centre. The system is investigated in terms of not only the differing outcomes to the LAPS-type mechanism, but also with respect to observed experimental Markovnikov and anti-Markovnikov selectivity, showing a good agreement with experiment. Finally pyridine-alkenylation to form 2-styrylpyridine through a half-sandwich ruthenium complex is also investigated.
    [Show full text]
  • 6. Basic Properties of Atoms
    6. Basic properties of atoms ... We will only discuss several interesting topics in this chapter: Basic properties of atoms—basically, they are really small, really, really, really small • The Thomson Model—a really bad way to model the atom (with some nice E & M) • The Rutherford nuclear atom— he got the nucleus (mostly) right, at least • The Rutherford scattering distribution—Newton gets it right, most of the time • The Rutherford cross section—still in use today • Classical cross sections—yes, you can do this for a bowling ball • Spherical mirror cross section—the disco era revisited, but with science • Cross section for two unlike spheres—bowling meets baseball • Center of mass transformation in classical mechanics, a revised mass, effectively • Center of mass transformation in quantum mechanics—why is QM so strange? • The Bohr model—one wrong answer, one Nobel prize • Transitions in the Bohr model—it does work, I’m not Lyman to you • Deficiencies of the Bohr Model—how did this ever work in the first place? • After this we get back to 3D QM, and it gets real again. Elements of Nuclear Engineering and Radiological Sciences I NERS 311: Slide #1 ... Basic properties of atoms Atoms are small! e.g. 3 Iron (Fe): mass density, ρFe =7.874 g/cm molar mass, MFe = 55.845 g/mol N =6.0221413 1023, Avogadro’s number, the number of atoms/mole A × ∴ the volume occupied by an Fe atom is: MFe 1 45 [g/mol] 1 23 3 = 23 3 =1.178 10− cm NA ρ 6.0221413 10 [1/mol]7.874 [g/cm ] × Fe × The radius is (3V/4π)1/3 =0.1411 nm = 1.411 A˚ in Angstrøm units.
    [Show full text]
  • Rutherford Scattering
    Rutherford Scattering Gavin Cheung F 09328173 November 15, 2010 Abstract A thin piece of gold foil is bombarded with alpha particles using an americium-241 source at several angles. The resulting scattering of the alpha particles is examined by finding the count rate at the angles. It was found that most of the particles were unscattered while a minority were scattered. It is predicted by Rutherford's model that the count rate is proportional to cosec4 of the angle and this relationship was verified. This disproves the plum-pudding model and supports Rutherford's theory. ? Introduction The idea of the atom has been around for millenia yet little could be said about it. By the end of the 19th Century, it became apparent that atoms were a useful tool that could be used to model phenomena in physics and chemistry. J. J. Thomson proposed the plum pudding model in 1904 where the atom is a mass of positive charge with small negatively charged electrons embedded in it like plums in a plum pudding. In 1909, Ernest Rutherford directed the famous experiment where a thin sheet of gold foil was bom- barded with alpha particles. The plum pudding model predicted that the alpha particles would be scattered by the gold atoms by small angles. However, it was found that most of the alpha particles passed straight through the gold foil with little scattering and a very small amount of the alpha particles were scattered by some large angle and some were even backscattered. The only explanation Rutherford had was that the plum pudding model could not be right.
    [Show full text]
  • Rutherford Scattering Simulation
    Name ______________________________ Date______________________ Rutherford Scattering Simulation Ernest Rutherford, (30 August 1871 – 19 October 1937) was a New Zealand-born British physicist and chemist who became known as the father of nuclear physics. He was awarded the noble prize in chemistry in 1908 for his investigations into the disintegration of the elements, and radioactive substances. Rutherford performed his most famous work after he became a Nobel laureate. In 1911, although he could not prove that it was positive or negative, he theorized that atoms have their charge in a very small nucleus and pioneered the Rutherford model of the atom. Through his discovery and interpretation of Rutherford scattering in his gold foil experiment he is widely credited with discovery of the the proton. Rutherford remains the only science Nobel Prize winner to have performed his most famous work after receiving the prize. The popular theory of atomic structure at the time of Rutherford's experiment was the "plum pudding model". This model was developed in 1904 by J. J. Thomson, the scientist who discovered the electron. This theory held that the negatively charged electrons in an atom were floating (sometimes moving) in a sea of positive charge. The gold foil experiment fires a series of positively charged alpha particles (helium nuclei) at a very thin sheet of gold foil. If Thomson's Plum Pudding model was to be accurate, the big alpha particles should have passed through the gold foil with only a few minor deflections. This is because the alpha particles are larger and heavier than electrons GOLD FOIL EXPERIMENT Expected results: alpha particles passing through the plum pudding model of the atom undisturbed.
    [Show full text]
  • Coercing Magnetism Into Diamagnetic Ceramics: a Case Study in Alumina Erik Nykwest University of Connecticut - Storrs, [email protected]
    University of Connecticut Masthead Logo OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 4-25-2019 Coercing Magnetism into Diamagnetic Ceramics: A Case Study in Alumina Erik Nykwest University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Nykwest, Erik, "Coercing Magnetism into Diamagnetic Ceramics: A Case Study in Alumina" (2019). Doctoral Dissertations. 2136. https://opencommons.uconn.edu/dissertations/2136 Coercing Magnetism into Diamagnetic Ceramics: A Case Study in Alumina Erik Carl Nykwest, Ph.D. University of Connecticut, 2019 Ceramics are very diverse class of materials whose properties can vary greatly. It is this diversity that make ceramics so useful in advanced technology. The relatively open crystal structure of ceramics makes it pos- sible to impart functionalities via judicious doping. This work focuses on developing a generalized method for introducing magnetism into normally non-magnetic (diamagnetic) ceramics, using the example case of alumina (Al2O3).Here, substitutional doping of Al atoms with 3d transition metal in α- and θ-alumina was studied. Density functional theory was used to predict the structural, electronic, and magnetic properties of doped alumina, as well as its stability. The results show that adding small concentrations of transition metals to alumina may increase magnetic activity by generating unpaired electrons whose net magnetic moments may couple with external magnetic fields. The dopant species and dopant coordination environment are the most important factors in determining the spin density distribution (localized or delocalized from the dopant atom) and net magnetic moment, which strongly direct the ability of the doped alumina to couple with an ex- ternal field.
    [Show full text]
  • Chapter 5.1 Slides
    5.1 Revising the Atomic Model > Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5.1 Revising the Atomic Model > Energy Levels in Atoms The Bohr Model In 1913, Niels Bohr (1885–1962), a young Danish physicist and a student of Rutherford, developed a new atomic model. • He changed Rutherford’s model to incorporate newer discoveries about how the energy of an atom changes when the atom absorbs or emits light. 2 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5.1 Revising the Atomic Model > Energy Levels in Atoms The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. 3 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5.1 Revising the Atomic Model > Energy Levels in Atoms The Bohr Model Each possible electron orbit in Bohr’s model has a fixed energy. • The fixed energies an electron can have are called energy levels. • A quantum of energy is the amount of energy required to move an electron from one energy level to another energy level. 4 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5.1 Revising the Atomic Model > Energy Levels in Atoms The Bohr Model The rungs on this ladder are somewhat like the energy levels in Bohr’s model of the atom. • A person on a ladder cannot stand between the rungs.
    [Show full text]
  • First-Principles Density Functional Theory Studies on Perovskite Materials
    New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations 5-31-2021 First-principles density functional theory studies on perovskite materials Aneer Lamichhane New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Condensed Matter Physics Commons, and the Materials Science and Engineering Commons Recommended Citation Lamichhane, Aneer, "First-principles density functional theory studies on perovskite materials" (2021). Dissertations. 1518. https://digitalcommons.njit.edu/dissertations/1518 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement,
    [Show full text]
  • Outlines of Rutherford's Α-Particles Scattering Experiment Arjun Dahal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilPapers Outlines of Rutherford’s α-particles scattering Experiment Arjun Dahal, Tribhuvan University, [email protected] Nikita Parajuli, Tribhuvan University, [email protected] ABSTRACT Rutherford’s α-particles scattering experiment was one of the milestone for the physics community as it provided an insight to an atom thus discarding the previously prevailed Thomson’s model. Through this article we shall examine the theoretical formulation of Rutherford’s experiment and how it helped to shape the modern physics. Keywords: Rutherford’s α-particle scattering, Differential scattering, Rutherford’s Experiment ©2017-2018 Journal of St. Xavier’s Physics Council Open access under CC BY-NC-ND 4.0 Introduction Rutherford in 1911 performed his famous α-particle scattering experiment by the incident of collinated beam of α-particles from the radioactive source radium on thin gold foil of about 1μm, placed on a movable ZnS screen. [Fig: Experimental setup for Rutherford’s Experiment Image Source [1]] The emitted α-particles scattered at the gold foil at varying from 00 to 1800 . α-particles are doubly charged helium atoms that have already lost both of their electrons thus have mass four Footnotes: if any! (Replace “Footnotes: if any!” by your footnotes or to whom you want to thanks!) ©2017-2018 Journal of St. Xavier’s Physics Council , Open access under CC BY-NC-ND 4.0 1 time of the mass of Hydrogen atom and positive charge two times than that of the proton. On the basis of this experiment Rutherford came with his new atomic model overcoming the defects of previously hailed Thomson’s atomic model.
    [Show full text]
  • Rutherford's Atom
    Rutherford’s Atom J.L. Heilbron A year and a half after he had published his celebrated paper on the nuclear model, Rutherford was busy planning an international meeting on atomic and molecular structure. This meeting, which took place in Brussels in 1913, was the second Solvay Council of Physics. As Richard Staley reminded us this morning, the first such council, whose centennial will be celebrated this October, brought together Europe’s leading physicists to discuss radiation and quanta. Their deliberations gave an important push to investigations of the use and meaning of quantization in physical theory, and, as Staley observed, can serve as a demarcator between classical and modern physics. 1. Rutherford’s atom Rutherford had a collaborator in organizing the meeting on atomic and molecular structure. This was Marie Curie. She did not think that much would come of their efforts. “Unfortunately [she wrote] we really know very little about the structure of matter and I doubt whether we will be much further advanced a year from now.” Apparently Mme Curie, although a leader of modern physics and the winner of two Nobel prizes, did not realize that her correspondent had revolutionized atomic physics the year before. She was by no means the only knowledgeable person who missed the significance of Rutherford’s nuclear model. No notice of it appeared in Nature, Revue scientifique, Physikalische Zeitschrift, or the proceedings of the Deutsche Naturforscherversammlung in any of the years 1911-13. J.J. Thomson did not mention it in the series of lectures on the structure of the atom he gave at the Royal Institution in 1913, nor did any of the distinguished atomic physicists whose popular lectures were published in 1912 under the promising title Les idées modernes sur la constitution de la matière.
    [Show full text]
  • Ernest Rutherford His Genius Shaped Our Modern World
    HiSTory erneST ruTHerford Ernest Rutherford his genius shaped our modern world I I.J. Douglas MacGregor - School of Physics and Astronomy, University of Glasgow - UK - DOI: 10.1051/epn/2011503 2011 marks the 100 th anniversary of the publication of Rutherford’s seminal paper [1] which first identified the atomic nucleus and its essential role in the structure of matter. This crucial discovery marked the birth of nuclear physics and lead to enormous advances in our understanding of nature. Rutherford’s legacy has profound and far reaching influences on the shape of the modern world we live in. rnest Rutherford was born on 30 th August moved back to the UK, to accept the Langworthy Profes - 1871 in Spring Grove, near Nelson, New Zea - sorship at Manchester University, where he carried out his land. His father, James was a farmer who had most famous work. In 1919 he returned to Cambridge as E emigrated from Perth, Scotland, and his an inspirational leader of the Cavendish Laboratory, buil - mother, Martha omson, was a school teacher from ding up its reputation as an international centre of Essex, England. In 1893 Ernest graduated with an M.A. scientific excellence. He was awarded the Nobel Prize for from the University of New Zealand in Wellington and chemistry in 1908 and was knighted in 1914. He was pre - gained a B.Sc. the following year. He was awarded a pres - sident of the Royal Society 1925-30 and became Lord tigious “1851 Exhibition Scholarship” to work as a Rutherford (1 st Baron of Nelson) in 1931.
    [Show full text]