Deeper Attention to Abusive User Content Moderation John Pavlopoulos Prodromos Malakasiotis Ion Androutsopoulos Straintek, Athens, Greece Straintek, Athens, Greece Athens University of Economics
[email protected] [email protected] and Business, Greece
[email protected] Abstract suffer from abusive user comments, which dam- age their reputations and make them liable to fines, Experimenting with a new dataset of 1.6M e.g., when hosting comments encouraging illegal user comments from a news portal and an actions. They often employ moderators, who are existing dataset of 115K Wikipedia talk frequently overwhelmed, however, by the volume page comments, we show that an RNN op- and abusiveness of comments.3 Readers are dis- erating on word embeddings outpeforms appointed when non-abusive comments do not ap- the previous state of the art in moderation, pear quickly online because of moderation delays. which used logistic regression or an MLP Smaller news portals may be unable to employ classifier with character or word n-grams. moderators, and some are forced to shut down We also compare against a CNN operat- their comments sections entirely. ing on word embeddings, and a word-list We examine how deep learning (Goodfellow baseline. A novel, deep, classification- et al., 2016; Goldberg, 2016, 2017) can be em- specific attention mechanism improves the ployed to moderate user comments. We experi- performance of the RNN further, and can ment with a new dataset of approx. 1.6M manually also highlight suspicious words for free, moderated (accepted or rejected) user comments without including highlighted words in the from a Greek sports news portal (called Gazzetta), training data.