Nobel Laureate Jennifer Doudna and the Bio Revolution Catalyst COLLEGE of CHEMISTRY UNIVERSITY of CALIFORNIA, BERKELEY

Total Page:16

File Type:pdf, Size:1020Kb

Nobel Laureate Jennifer Doudna and the Bio Revolution Catalyst COLLEGE of CHEMISTRY UNIVERSITY of CALIFORNIA, BERKELEY SP21 V 16.1 Spring/Summer 2021 Volume 16 • Issue 1 COLLEGE OFCatalyst CHEMISTRY • UNIVERSITY OF CALIFORNIA, BERKELEY Nobel Laureate Jennifer Doudna and the bio revolution Catalyst COLLEGE OF CHEMISTRY UNIVERSITY OF CALIFORNIA, BERKELEY dean Douglas S. Clark [email protected] executive associate dean Richmond Sarpong [email protected] chair, department of chemistry Matthew B. Francis [email protected] chair, department of chemical and biomolecular engineering Jeffrey A. Reimer [email protected] undergraduate dean John Arnold [email protected] senior assistant dean, college relations & development 7 Laurent “Lo” de Janvry [email protected] senior director of development Mindy Rex [email protected] senior director, strategic and philanthropic partnerships Camille M. Olufson [email protected] managing editor director marketing and communications Marge d’Wylde catalyst online Leigh Moyer contributors 12 Ashok Ajoy Laurent de Janvry Denise Klarquist Mark Kubinec Brice Yates research Sara Koerber design Alissar Rayes printing Dome Printing for submissions to college publications, please email content to: [email protected] 6 ON THE COVER In this issue, we celebrate Professor Jennifer Doudna’s Nobel Prize and the bio revolution she has helped create. COVER PHOTO: KEEGAN HOUSER catalyst online at: catalyst.berkeley.edu © 2021, Regents of the University of California contents Spring/Summer 2021 Volume 16 • Issue 1 3 DEAN’S DESK 16 The new era in theoretical chemistry 4 NEW & NOTABLE 18 MARTIN HEAD-GORDON 20 BIRGITTA WHALEY 8 FUTURE TECH 22 PHILLIP GEISSLER 24 ERAN RABANI 12 Nobel Laureate Jennifer Doudna and the bio revolution 26 NEW FACULTY PROFILES 32 DONOR SPOTLIGHT 36 EDITORIAL 16 32 26 28 30 36 College of Chemistry, UC Berkeley PHOTO © BENSONPHOTOS, ALL RIGHTS RESERVED. dean’s desk Strength and hope during adversity If the last year has taught us anything, it a full professor. Both departments have is that living through an unthinkable sit- recently completed virtual interviews — uation can become second nature, and never before done and flawlessly executed that by working together we can adapt to — for the next round of faculty hires, and make the best of the most demanding con- both departments have identified amazing, ditions. I have come to realize that the diverse candidates whom we are actively study of phase transitions goes beyond the pursuing. I hope to be announcing those boundaries of our College of Chemistry successful efforts this time next year. labs. In March 2020, we were all forced to Since my last message, we have made sig- ask ourselves, “How do we go from a state nificant strides in strengthening our ability of constant physical interaction to a state to address diversity, equity, inclusion, and of constant isolation, all the while main- belonging (DEIB) matters in the college. taining the same level of productivity and Anne Baranger has been appointed as our effectiveness?” Countless hours were spent inaugural associate dean for DEIB, and by faculty, staff, students, and researchers Brice Yates has joined the College as chief trying to identify the best methods to make DEIB officer. Together they lead the newly this transition palatable and sustainable. created College Advisory Committee for I remain extremely proud and grateful for Diversity, Equity, Inclusion, and Belonging, the hard work committed by everyone to and they have established several goals for the new state-of-the-art Heathcock Hall, for keep the college running smoothly. advancing DEIB in the College, including which we recently received a $10 million We are still euphoric from the excitement developing a five-year strategic plan. They commitment from PMP Tech. My excite- surrounding Jennifer Doudna receiving the have recently collected proposals for our ment and gratitude continue to grow with each step we take towards realizing this goal. 2020 Nobel Prize in Chemistry, sharing it graduate diversity fellows’ projects, which 3 with collaborator Emmanuelle Charpentier is a reminder of just how inspiring and Reflecting on these and so many other for the co-development of CRISPR-Cas9. driven our graduate students are. highlights from the last year, I am truly What an incredible achievement and inspir- In early May we welcomed our first William impressed, but not at all surprised, by the ing message. It was a pleasure to co-host, A. Lester Lecturer. This new lectureship, capacity of our College to make the suc- with our graduate students, an online dis- named for our distinguished colleague, was cessful transition to a new way of life cussion with Jennifer in November to hear established in 2020. It will bring to Berkeley while raising the bar of excellence even about the history of her remarkable journey eminent scholars from diverse personal higher. Together or apart, faculty, stu- and her vision for the future of gene-editing. and professional backgrounds to present dents, and staff in the College of Chemistry Also, last fall, the college was honored to their research and engage in discourse about will always find solutions to the tough- virtually host Birgitta Whaley as the 67th their experiences and challenges of becoming est problems facing us today. We continue Gilbert Newton Lewis Memorial Lecturer. scientists. I am thrilled to engage in this long to celebrate our shared passion for and In her lecture, she took us on a journey of overdue focus in our named lectureships. achievement in producing the best chem- “finding the quantum in biology,” and you istry and chemical engineering research in can read more about this fascinating work In other College news, I would like to the world. in the main science feature in this issue. I acknowledge Ron Silva, who has served as very much look forward to the days when our Advisory Board Chair for the last three these celebratory events can happen in years. Ron’s leadership was crucial in help- front of a packed auditorium again. ing the College meet several challenges, and I am grateful for his exemplary service. One of our greatest examples of triumph DOUGLAS S. CLARK Ron is succeeded in this role by our alum- Dean, College of Chemistry , Gilbert N. Lewis Professor in the face of adversity over the last year is nus John Markels, currently the President in our faculty recruitment efforts. Last July, of Vaccines at Merck and a longstand- assistant professor Ashok Ajoy joined us ing member of the board. I look forward in the Department of Chemistry. This July, to working with John to advance our goals Joelle Frechette, from Johns Hopkins for the future, including construction of University, will join the CBE faculty as Spring/Summer 2021 Catalyst NOTABLE RESEARCH•VIEWS NEW& DISCOVERIES•AWARDS Nobel gold medals delivered by diplomatic courier around the world Because of the pandemic, the award ceremony for the Nobel Prize in Stockholm was postponed in December 2020. Nevertheless, the Nobel commit- tee sent the Laureates their medals and beautiful hand painted diplomas. Eleven of the medals, including Professor Jennifer Doudna’s, traveled with diplomatic immunity via diplomatic pouch across the world. Have you ever wondered what the Nobel Prize medal is made of? Before 1980 the medal was 4 made from 23 carat gold. Newer Nobel Prize med- als are 18 carat green gold plated with 24 carat gold. Green gold (known as electrum) is an alloy of gold and silver, with trace amounts of copper. The diameter of the Nobel Prize medal is 66 mm but the weight and thickness vary with the price of gold. The average Nobel Prize medal is 175 g with a thickness ranging from 2.4-5.2 mm. Chemistry professor and alumnus Paul Alivisatos (Ph.D. ’86, Chem), who directed the Lawrence Berkeley National Laboratory for seven years and served the UC Berkeley campus as vice chancellor for research and currently as executive vice chancellor and provost, all while continuing his pioneering work in nanocrystals, has been appointed president of the University of Chicago, his undergraduate alma mater. “I can think of no one better suited for this extraordinary opportunity, and no one who will be harder for us to replace,” said Chancellor Carol Christ. “Paul has been an extraordinary partner; a tireless, visionary leader; a friend; and a true champion for Berkeley’s mission, values and CHRIS POLYDOROFF academic excellence.” We will miss you at the College of Chemistry but know that many students at Berkeley received excellent educations under your tutelage. Students at the University of Chicago will benefit from your guidance of the institution. Best of luck from all of us. College of Chemistry, UC Berkeley Frances Arnold named co-chair to President Biden’s Council of Advisers on Science and Technology In a move to strengthen the position of science SOCIETY COURTESY ROYAL in the government, President Biden has selected geneticist Eric Lander to be science advisor for Theoretical Chemist his new administration. President Biden also elevated the position to Cabinet rank. He has William Miller also chosen Maria Zuber (MIT) and alumna and turns 80 Nobel Laureate Frances Arnold (CalTech) to serve as co-chairs of the President’s Council of Advisers Professor Emeritus William (Bill) Miller’s daughters and on Science and Technology. Arnold, winner of the coworkers organized a zoom 80th birthday party for him 2018 Nobel Prize in Chemistry and the recipient in March. The party included lots of reminisces from Bill, of numerous other honors, is a respected pioneer his colleagues, and many of his former coworkers. in the fields of protein and chemical engineering. During his career, Bill made many profound and diverse The council will advise the president on matters contributions to theoretical physical chemistry of molecu- involving science, technology, education, and lar motion, from semiclassical mechanics to reactive scat- innovation policy. The council will also provide tering, and from chemical kinetics to path integrals.
Recommended publications
  • And Should Not, Change Toxic Tort Causation Doctrine
    THE MORE WE KNOW, THE LESS INTELLIGENT WE ARE? - HOW GENOMIC INFORMATION SHOULD, AND SHOULD NOT, CHANGE TOXIC TORT CAUSATION DOCTRINE Steve C. Gold* Advances in genomic science are rapidly increasing our understanding of dis- ease and toxicity at the most fundamental biological level. Some say this heralds a new era of certainty in linking toxic substances to human illness in the courtroom. Others are skeptical. In this Article I argue that the new sciences of molecular epidemiology and toxicogenomics will evince both remarkable explanatory power and intractable complexity. Therefore, even when these sciences are brought to bear, toxic tort claims will continue to present their familiar jurisprudential problems. Nevertheless, as genomic information is used in toxic tort cases, the sci- entific developments will offer courts an opportunity to correct mistakes of the past. Courts will miss those opportunities, however, if they simply transfer attitudesfrom classical epidemiology and toxicology to molecular and genomic knowledge. Using the possible link between trichloroethyleneand a type of kidney cancer as an exam- ple, I describe several causation issues where courts can, if they choose, improve doctrine by properly understanding and utilizing genomic information. L Introduction ............................................... 370 II. Causation in Toxic Torts Before Genomics ................... 371 A. The Problem .......................................... 371 B. Classical Sources of Causation Evidence ................ 372 C. The Courts Embrace Epidemiology - Perhaps Too Tightly ................................................ 374 D. Evidence Meets Substance: Keepers of the Gate ......... 379 E. The Opposing Tendency ................................ 382 III. Genomics, Toxicogenomics, and Molecular Epidemiology: The M ore We Know ........................................ 383 A. Genetic Variability and "Background" Risk .............. 384 B. Genetic Variability and Exposure Risk ................... 389 C.
    [Show full text]
  • Pomona College Magazine Fall/Winter 2020: the New (Ab
    INSIDE:THE NEW COLLEGE MAGAZINE (AB)NORMAL • The Economy • Childcare • City Life • Dating • Education • Movies • Elections Fall-Winter 2020 • Etiquette • Food • Housing •Religion • Sports • Tourism • Transportation • Work & more Nobel Laureate Jennifer Doudna ’85 HOMEPAGE Together in Cyberspace With the College closed for the fall semester and all instruction temporarily online, Pomona faculty have relied on a range of technologies to teach their classes and build community among their students. At top left, Chemistry Professor Jane Liu conducts a Zoom class in Biochemistry from her office in Seaver North. At bottom left, Theatre Professor Giovanni Molina Ortega accompanies students in his Musical Theatre class from a piano in Seaver Theatre. At far right, German Professor Hans Rindesbacher puts a group of beginning German students through their paces from his office in Mason Hall. —Photos by Jeff Hing STRAY THOUGHTS COLLEGE MAGAZINE Pomona Jennifer Doudna ’85 FALL/WINTER 2020 • VOLUME 56, NO. 3 2020 Nobel Prize in Chemistry The New Abnormal EDITOR/DESIGNER Mark Wood ([email protected]) e’re shaped by the crises of our times—especially those that happen when ASSISTANT EDITOR The Prize Wwe’re young. Looking back on my parents’ lives with the relative wisdom of Robyn Norwood ([email protected]) Jennifer Doudna ’85 shares the 2020 age, I can see the currents that carried them, turning them into the people I knew. Nobel Prize in Chemistry for her work with They were both children of the Great Depression, and the marks of that experi- BOOK EDITOR the CRISPR-Cas9 molecular scissors. Sneha Abraham ([email protected]) ence were stamped into their psyches in ways that seem obvious to me now.
    [Show full text]
  • Dean, School of Science
    Dean, School of Science School of Science faculty members seek to answer fundamental questions about nature ranging in scope from the microscopic—where a neuroscientist might isolate the electrical activity of a single neuron—to the telescopic—where an astrophysicist might scan hundreds of thousands of stars to find Earth-like planets in their orbits. Their research will bring us a better understanding of the nature of our universe, and will help us address major challenges to improving and sustaining our quality of life, such as developing viable resources of renewable energy or unravelling the complex mechanics of Alzheimer’s and other diseases of the aging brain. These profound and important questions often require collaborations across departments or schools. At the School of Science, such boundaries do not prevent people from working together; our faculty cross such boundaries as easily as they walk across the invisible boundary between one building and another in our campus’s interconnected buildings. Collaborations across School and department lines are facilitated by affiliations with MIT’s numerous laboratories, centers, and institutes, such as the Institute for Data, Systems, and Society, as well as through participation in interdisciplinary initiatives, such as the Aging Brain Initiative or the Transiting Exoplanet Survey Satellite. Our faculty’s commitment to teaching and mentorship, like their research, is not constrained by lines between schools or departments. School of Science faculty teach General Institute Requirement subjects in biology, chemistry, mathematics, and physics that provide the conceptual foundation of every undergraduate student’s education at MIT. The School faculty solidify cross-disciplinary connections through participation in graduate programs established in collaboration with School of Engineering, such as the programs in biophysics, microbiology, or molecular and cellular neuroscience.
    [Show full text]
  • Southwest Retort
    SOUTHWEST RETORT SIXTY-NINTH YEAR OCTOBER 2016 Published for the advancement of Chemists, Chemical Engineers and Chemistry in this area published by The Dallas-Fort Worth Section, with the cooperation of five other local sections of the American Chemical Society in the Southwest Region. Vol. 69(2) OCTOBER 2016 Editorial and Business Offices: Contact the Editor for subscription and advertisement information. Editor: Connie Hendrickson: [email protected] Copy Editor: Mike Vance, [email protected] Business Manager: Danny Dunn: [email protected] The Southwest Retort is published monthly, September through May, by the Dallas-Ft. Worth Section of the American Chemical Society, Inc., for the ACS Sections of the Southwest Region. October 2016 Southwest RETORT 1 TABLE OF CONTENTS Employment Clearing House………….......3 Fifty Years Ago……………………….….....6 ARTICLES and COLUMNS Schulz Award Winner Gale Hunt………….7 And Another Thing……………………….11 Around the Area………………………….14 Letter from the Editor….…..……….........17 SPECIAL EVENTS National Chemistry Week…………………9 NEWS SHORTS Former pesticide ingredient found in dolphins, birds and fish……………………8 Coffee-infused foam removes lead from contaminated water………………………10 Snake venom composition could be related to hormones and diet……………………..13 Detecting blood alcohol content with an electronic skin patch………………...……16 INDEX OF ADVERTISERS Huffman Laboratories……………....……..4 Contact the DFW Section Vance Editing…..…………….…….……….4 General: [email protected] UT Arlington………………………………..4 Education: [email protected] ANA-LAB……………………...….…...……5 Elections: [email protected] Facebook: DFWACS Twitter: acsdfw October 2016 Southwest RETORT 2 EMPLOYMENT CLEARING HOUSE Job applicants should send name, email, and phone, along with type of position and geographical area desired; employers may contact job applicants directly.
    [Show full text]
  • World's Leading Scientists and Technologists to Gather at the Global
    MEDIA RELEASE WORLD’S LEADING SCIENTISTS AND TECHNOLOGISTS TO GATHER AT THE GLOBAL YOUNG SCIENTISTS SUMMIT 2021 Summit will host 21 eminent scientists including Nobel Laureates, who will engage and share first-hand insights in science and research with over 500 young scientists from 30 countries 6 JANUARY 2021, SINGAPORE – The National Research Foundation Singapore (NRF) will host the ninth edition of the Global Young Scientists Summit (GYSS), which will see the gathering of the world’s foremost scientists and technologists engage and inspire aspiring young scientists. Held virtually from 12 to 15 January 2021, the eminent scientists will also discuss the latest advances in research and how they can be used to develop solutions to address major global challenges. The Summit will be graced by Singapore’s Deputy Prime Minister and Chairman of NRF, Mr Heng Swee Keat, who will deliver the opening address. The GYSS is a multi-disciplinary event covering the disciplines of chemistry, physics, biology, mathematics, computer science, and engineering. During the event, luminary scientists and technologists will share details of their discoveries by delivering plenary addresses, participating in panel discussions, and engaging with the young scientists in small group discussions. They will also provide mentorship to over 500 young researchers from more than 30 countries. Star-studded panel speaking on a wide range of subjects and issues This year, the GYSS sees 21 speakers, the highest number since the start of the Summit, of whom 17 are speaking at the Summit for the first time. The list includes Nobel Laureates, Fields Medallists, Millennium Technology Prize and the Turing Award winners.
    [Show full text]
  • Pauling-Linus.Pdf
    NATIONAL ACADEMY OF SCIENCES L I N U S C A R L P A U L I N G 1901—1994 A Biographical Memoir by J A C K D. D UNITZ Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. LINUS CARL PAULING February 28, 1901–August 19, 1994 BY JACK D. DUNITZ INUS CARL PAULING was born in Portland, Oregon, on LFebruary 28, 1901, and died at his ranch at Big Sur, California, on August 19, 1994. In 1922 he married Ava Helen Miller (died 1981), who bore him four children: Linus Carl, Peter Jeffress, Linda Helen (Kamb), and Edward Crellin. Pauling is widely considered the greatest chemist of this century. Most scientists create a niche for themselves, an area where they feel secure, but Pauling had an enormously wide range of scientific interests: quantum mechanics, crys- tallography, mineralogy, structural chemistry, anesthesia, immunology, medicine, evolution. In all these fields and especially in the border regions between them, he saw where the problems lay, and, backed by his speedy assimilation of the essential facts and by his prodigious memory, he made distinctive and decisive contributions. He is best known, perhaps, for his insights into chemical bonding, for the discovery of the principal elements of protein secondary structure, the alpha-helix and the beta-sheet, and for the first identification of a molecular disease (sickle-cell ane- mia), but there are a multitude of other important contri- This biographical memoir was prepared for publication by both The Royal Society of London and the National Academy of Sciences of the United States of America.
    [Show full text]
  • The Grand Challenges in the Chemical Sciences
    The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Jerusalem, June 3-7 2018 Biographies and Abstracts The Israel Academy of Sciences and Humanities Celebrating the 70 th birthday of the State of Israel conference on THE GRAND CHALLENGES IN THE CHEMICAL SCIENCES Participants: Jacob Klein Dan Shechtman Dorit Aharonov Roger Kornberg Yaron Silberberg Takuzo Aida Ferenc Krausz Gabor A. Somorjai Yitzhak Apeloig Leeor Kronik Amiel Sternberg Frances Arnold Richard A. Lerner Sir Fraser Stoddart Ruth Arnon Raphael D. Levine Albert Stolow Avinoam Ben-Shaul Rudolph A. Marcus Zehev Tadmor Paul Brumer Todd Martínez Reshef Tenne Wah Chiu Raphael Mechoulam Mark H. Thiemens Nili Cohen David Milstein Naftali Tishby Nir Davidson Shaul Mukamel Knut Wolf Urban Ronnie Ellenblum Edvardas Narevicius Arieh Warshel Greg Engel Nathan Nelson Ira A. Weinstock Makoto Fujita Hagai Netzer Paul Weiss Oleg Gang Abraham Nitzan Shimon Weiss Leticia González Geraldine L. Richmond George M. Whitesides Hardy Gross William Schopf Itamar Willner David Harel Helmut Schwarz Xiaoliang Sunney Xie Jim Heath Mordechai (Moti) Segev Omar M. Yaghi Joshua Jortner Michael Sela Ada Yonath Biographies and Abstracts (Arranged in alphabetic order) The Grand Challenges in the Chemical Sciences Dorit Aharonov The Hebrew University of Jerusalem Quantum Physics through the Computational Lens While the jury is still out as to when and where the impressive experimental progress on quantum gates and qubits will indeed lead one day to a full scale quantum computing machine, a new and not-less exciting development had been taking place over the past decade.
    [Show full text]
  • ARK GENOMIC REVOLUTION MULTI SECTOR ETF (ARKG) HOLDINGS As of 09/27/2021
    ARK GENOMIC REVOLUTION MULTI SECTOR ETF (ARKG) HOLDINGS As of 09/27/2021 Company Ticker CUSIP Shares Market Value($) Weight(%) 1 TELADOC HEALTH INC TDOC 87918A105 3,937,797 531,208,815.30 6.99 2 EXACT SCIENCES CORP EXAS 30063P105 3,971,013 381,296,668.26 5.01 3 PACIFIC BIOSCIENCES OF CALIF PACB 69404D108 13,696,148 350,347,465.84 4.61 4 VERTEX PHARMACEUTICALS INC VRTX 92532F100 1,722,281 316,228,014.41 4.16 5 FATE THERAPEUTICS INC FATE 31189P102 4,825,395 312,926,865.75 4.12 6 IONIS PHARMACEUTICALS INC IONS 462222100 8,572,965 310,341,333.00 4.08 7 REGENERON PHARMACEUTICALS REGN 75886F107 430,742 275,201,063.80 3.62 8 TWIST BIOSCIENCE CORP TWST 90184D100 2,237,350 250,829,308.50 3.30 9 TAKEDA PHARMACEUTIC-SP ADR TAK UN 874060205 13,592,076 229,570,163.64 3.02 10 ACCOLADE INC ACCD 00437E102 5,268,242 226,850,500.52 2.98 11 INTELLIA THERAPEUTICS INC NTLA 45826J105 1,508,421 224,965,907.94 2.96 12 VEEVA SYSTEMS INC-CLASS A VEEV 922475108 741,198 222,307,516.14 2.92 13 CAREDX INC CDNA 14167L103 3,433,475 220,978,451.00 2.91 14 CRISPR THERAPEUTICS AG CRSP H17182108 1,804,041 210,044,493.63 2.76 15 INCYTE CORP INCY 45337C102 2,893,385 199,643,565.00 2.63 16 INVITAE CORP NVTA 46185L103 6,059,066 182,135,523.96 2.40 17 ADAPTIVE BIOTECHNOLOGIES ADPT 00650F109 4,888,391 178,377,387.59 2.35 18 BEAM THERAPEUTICS INC BEAM 07373V105 1,849,698 175,110,909.66 2.30 19 SIGNIFY HEALTH INC -CLASS A SGFY 82671G100 8,107,683 160,937,507.55 2.12 20 UIPATH INC - CLASS A PATH 90364P105 2,955,628 155,761,595.60 2.05 21 CASTLE BIOSCIENCES INC CSTL 14843C105 2,130,211
    [Show full text]
  • John D. Roberts
    John D. (Jack) Roberts 1918 – 2016 John D. Roberts, the Institute Professor of Chemistry, Emeritus, and one of the most influential chemists of the 20th century, passed away on October 29, 2016 at the age of 98 following a stroke. John Dombrowski “Jack” Roberts was born on June 8, 1918 in Los Angeles, California. He spent most of his 98 years in Southern California and witnessed first hand its transformation from a reasonably under- populated region into one of the world’s busiest metropolitan areas. In fact, Jack (or “JDR” as he was oft referred in the labs at Caltech) was born essentially right underneath what is now the famous four level interchange connecting the 101 and 110 freeways in modern day downtown LA. JDR also witnessed the growth and explosion of science and in particular chemistry over that century span. As summarized in his J. Org. Chem. 2009, 74, 4897-4917 article and numerous talks over the later part of his life, the explosion of instrumentation capabilities available to the organic chemist progressed in the course of his scientific career from no less than the melting point apparatus to some of the most advanced instruments on the planet. Without doubt, the advances most influential to JDR’s monumental career in chemistry were the advent of nuclear magnetic resonance (NMR) spectroscopy and the accompanying explosion in computing. Combined, these tools greatly facilitated the insightfully designed experimentation and careful analyses that became the hallmark of JDR’s career. It is clear that Jack’s thoroughgoing nature combined with his deep understanding of instrumentation and fundamental chemistry served as an inspiration to nearly four generations of scientists.
    [Show full text]
  • Walter Loveland Oral History Interview, “Of Glenn Seaborg and Super Heavy Elements: a Nuclear Chemist Looks Back”, July Page 3 of 24 22, 2015
    Walter Loveland Oral History Interview, July 22, 2015 Title “Of Glenn Seaborg and Super Heavy Elements: A Nuclear Chemist Looks Back” Date July 22, 2015 Location Valley Library, Oregon State University. Summary In the interview, Loveland discusses his colorful family background and upbringing in blue-collar suburban Chicago. He also describes his earliest interests in science, his path through undergraduate and graduate studies, and those who influenced him as he made his way through his higher education, including his contacts with luminaries like Charles Coryell and John Huizenga. From there, Loveland begins to reflect on his long association with both Oregon State University and the University of California, Berkeley. In so doing, he shares his memories of his initial impressions of OSU and Corvallis, his first contacts with Glenn Seaborg, a few initial research experiences in research, and his impressions of Seaborg as a personality. He likewise recounts his interactions with Linus Pauling as well as major figures in nuclear science at OSU, Chih Wang, John Ringle and Dale Trout among them. Loveland next recounts his memories of the Radiation Biology program at OSU; discusses the life and career of a former student, Sister Mary Joseph Bouchard; and comments on the climate for women and people of color in the sciences at OSU and in the community at large. Loveland's research is the next focus of the interview. In this he provides an overview of his work with super-heavy ions while also describing his research collaborations and the frequent trips to Berkeley that these collaborations demanded. He also recounts his interactions with OSU's Campus Radiation Safety Committee, his disinterest in working at the Hanford Nuclear Site, his experience of co-authoring two books with Glenn Seaborg, and hindrances to scientific advancement that he has noted as a result of denials of security clearance.
    [Show full text]
  • Precision Medicine Initiative: Building a Large US Research Cohort
    Precision Medicine Initiative: Building a Large U.S. Research Cohort February 11-12, 2015 PARTICIPANT LIST Goncalo Abecasis, D. Phil. Philip Bourne, Ph.D. Professor of Biostatistics Associate Director for Data Science University of Michigan, Ann Arbor Office of the Director National Institutes of Health Christopher Austin, M.D. Director Murray Brilliant, Ph.D. National Center for Advancing Translational Sciences Director National Institutes of Health Center for Human Genetics Marshfield Clinic Research Foundation Vikram Bajaj, Ph.D. Chief Scientist Greg Burke, M.D., M.Sc. Google Life Sciences Professor and Director Wake Forest School of Medicine Dixie Baker, Ph.D. Wake Forest University Senior Partner Martin, Blanck and Associates Antonia Calafat, Ph.D. Chief Dana Boyd Barr, Ph.D. Organic Analytical Toxicology Branch Professor, Exposure Science and Environmental Health Centers for Disease Control and Prevention Rollins School of Public Health Emory University Robert Califf, M.D. Vice Chancellor for Clinical and Translational Research Jonathan Bingham, M.B.A. Duke University Medical Center Product Manager, Genomics Google, Inc. Rex Chisholm, Ph.D. Adam and Richard T. Lind Professor of Medical Eric Boerwinkle, Ph.D. Genetics Professor and Chair Vice Dean for Scientific Affairs and Graduate Studies Human Genetics Center Associate Vice President for Research University of Texas Health Science Center Northwestern University Associate Director Human Genome Sequencing Center Rick Cnossen, M.S. Baylor College of Medicine Director Global Healthcare Solutions Erwin Bottinger, M.D. HIMSS Board of Directors Professor PCHA/Continua Health Alliance Board of Directors The Charles Bronfman Institute for Personalized Intel Corporation Medicine Icahn School of Medicine at Mount Sinai - 1 - Francis Collins, M.D., Ph.D.
    [Show full text]
  • Opening a New Chapter in the Martian Chronicles
    California Institute of Technology Volume 2., No.• ~emlMr1"2 B•• ed on d.t. from the 1975 Viking ml ••lon , the Explore". Guide to MoIr • .... pon Arden Albee'. w a ll will be In for . ome updating once Ma ,. Ob.erve r be g in. It ••urv e v of the planet late ne xt vear. Albee ke ep. a replica of the .pacecraft In Caltech'. Office of Graduate Studle., w" .. e In addition to hi. role a. Ob.e rver project .clentl.t, he'. been dean . lnce1984. Opening a new chapter in the Martian Chronicles BV Heidi Aapaturlan Speaking this past August at a many Mars aficionados ever since the working in concert like an interplan­ "It's not cleat what sort of geologic NASA press conference called to herald Viking Lander's soil experimencs came etary one-man band, will monitor and dynamics might have produced this che upcoming launch of Mars Observer, up empty in 1975: has life ever map Mars with a sweep and precision dichotomy," says Albee, alchough he Cal tech Professor of Geology Arden evolved on Mars? Did the planet once that is expected to yield more informa­ suspects that the answer may start to Albee sounded ar rimes like a man who harbor a bacterial Atlantis that van­ tion abour the planer's composition, emerge once ic's determined whether had jusc been commissioned to write ished, along with its water, aeons ago? climate, geology, and evolutionary Mars, like Earth, has a magnetic field. the lyrics for the Marcian version of Although no one expects the Mars history than all previous miss ions co Currenc theory holds that a planet'S "America che Beauciful." "We know Observer, launched September 25 from Mars put together.
    [Show full text]