Bilateral Pituitary Adenomas Occurring with Multiple Endocrine Neoplasia Type One
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endocrine Pathology (537-577)
LABORATORY INVESTIGATION THE BASIC AND TRANSLATIONAL PATHOLOGY RESEARCH JOURNAL LI VOLUME 99 | SUPPLEMENT 1 | MARCH 2019 2019 ABSTRACTS ENDOCRINE PATHOLOGY (537-577) MARCH 16-21, 2019 PLATF OR M & 2 01 9 ABSTRACTS P OSTER PRESENTATI ONS EDUCATI ON C O M MITTEE Jason L. Hornick , C h air Ja mes R. Cook R h o n d a K. Y a nti s s, Chair, Abstract Revie w Board S ar a h M. Dr y and Assign ment Co m mittee Willi a m C. F a q ui n Laura W. La mps , Chair, C ME Subco m mittee C ar ol F. F ar v er St e v e n D. Billi n g s , Interactive Microscopy Subco m mittee Y uri F e d ori w Shree G. Shar ma , Infor matics Subco m mittee Meera R. Ha meed R aj a R. S e et h al a , Short Course Coordinator Mi c h ell e S. Hir s c h Il a n W ei nr e b , Subco m mittee for Unique Live Course Offerings Laksh mi Priya Kunju D a vi d B. K a mi n s k y ( Ex- Of ici o) A n n a M ari e M ulli g a n Aleodor ( Doru) Andea Ri s h P ai Zubair Baloch Vi nita Parkas h Olca Bast urk A nil P ar w a ni Gregory R. Bean , Pat h ol o gist-i n- Trai ni n g D e e p a P atil D a ni el J. -
MDM2 Gene Polymorphisms May Be Associated with Tumor
in vivo 31 : 357-363 (2017) doi:10.21873/invivo.11067 The Role of p16 and MDM2 Gene Polymorphisms in Prolactinoma: MDM2 Gene Polymorphisms May Be Associated with Tumor Shrinkage SEDA TURGUT 1, MUZAFFER ILHAN 2, SAIME TURAN 3, OZCAN KARAMAN 2, ILHAN YAYLIM 3, OZLEM KUCUKHUSEYIN 3 and ERTUGRUL TASAN 2 Departments of 1Internal Medicine, and 2Endocrinology and Metabolism, Bezmialem Vakif University, Istanbul, Turkey; 3Department of Molecular Medicine, The Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey → Abstract. Aim: Prolactinomas are thought to arise from genotype (TT+GG) of MDM2 SNP309T G was clonal expansion of a single mutated cell which is subjected significantly higher than in heterozygous genotype (TG) to growth stimuli of several permissive factors, although the carriers (odds ratio(OR)=0.18, 95% confidence pathogenetic mechanisms underlying tumorigenesis remain interval(CI)=0.06-0.58; p=0.003). Conclusion: This study unclear. The present study aimed to investigate the role of showed that p16 and MDM2 polymorphisms do not play a → → p16 (540C G and 580C T) and mouse double minute 2 decisive role in tumorigenesis, but some genotypes of these → (MDM2) (SNP309T G) gene polymorphisms in polymorphisms might be associated with follow-up tumorigenesis and characteristics of prolactinoma. Patients characteristics of prolactinoma. and Methods: A total of 74 patients with prolactinoma and 100 age- and gender-matched healthy individuals were Prolactinoma is the most frequent type of functional pituitary enrolled in the study. Serum prolactin levels were measured tumor, with an estimated prevalence of approximately 45 by enzyme-linked immunosorbent assay (ELISA). p16 and cases per 100,000 population in adults (1). -
Synchronous Primary Hyperparathyroidism and Papillary Thyroid Carcinoma in a 50-Year-Old Female, Who Initially Presented with Uncontrolled Hypertension
Open Access http://www.jparathyroid.com Journal of Journal of Parathyroid Disease 2014,2(2),69–70 Epidemiology and Prevention Synchronous primary hyperparathyroidism and papillary thyroid carcinoma in a 50-year-old female, who initially presented with uncontrolled hypertension Seyed Seifollah Beladi Mousavi1, Hamid Nasri2*, Saeed Behradmanesh3 hough, the association between parathyroid and Implication for health policy/practice/research/ thyroid diseases is not uncommon, however medical education concurrent presence of parathyroid adenoma An association between parathyroid adenoma Tand thyroid cancer is rare (1,2). The association between and thyroid cancer is rare. Awareness of this concurrent thyroid and parathyroid disease was firstly situation will enable clinicians to consider for explained by Kissin et al. in 1947 (2). Awareness of possible thyroid pathology in patients with primary this situation will enable clinicians to consider for hyperparathyroidism. Both of these endocrine diseases possible thyroid pathology in patients with primary could then be managed with a single surgery involving hyperparathyroidism. While thyroid follicular cells and concomitant resection of the thyroid and involved parathyroid cells are embryologically different. It is evident parathyroid glands. that presence of parathyroid adenoma leading to primary hyperparathyroidism and coexistent of thyroid papillary cancer is rare. Both of these endocrine diseases could then coincidence of papillary thyroid carcinoma. After surgery, be managed with a single surgery involving concomitant serum parathormone and calcium returned to their normal resection of the thyroid and involved parathyroid glands. values and patient was referred to an endocrinologist for A 50-year-old female, referred to the nephrology clinic for continuing the treatment of papillary carcinoma. -
Parathyroid Carcinoma Presenting As an Acute Pancreatitis
International Journal of Radiology & Radiation Therapy Case Report Open Access Parathyroid carcinoma presenting as an acute pancreatitis Abstract Volume 3 Issue 3 - 2017 Parathyroid carcinoma is the cause of only 1% of hyperparathyroidism cases. The Enrique Cadena,1,2,3 Alfredo Romero-Rojas1,3 incidence of acute pancreatitis in patients with hyperparathyroidism was reported to 1Department of Head and Neck Surgery and Pathology, be only 1.5%. The occurrence of pancreatitis in patients with parathyroid carcinoma National Cancer Institute, Colombia is unusual, ranging from 0% to 15%. Here, we report a very rare case of parathyroid 2Department of Surgery, National University of Colombia, carcinoma presenting as an acute pancreatitis in a 45years old woman, who was Colombia suspected for hypercalcemia and higher levels of intact parathyroid hormone. The 3Department of Head and Neck Surgery and Pathology, Marly parathyroid carcinoma was verified with ultrasound, CT Scan, and single-photon Clinic, Colombia emission computed tomography. The pathological anatomy report showed a minimally invasive parathyroid carcinoma. Following surgery, the patient was free after almost Correspondence: Enrique Cadena, Department of Head and a 4years follow up. Neck Surgery and Pathology, National Cancer Institute, Bogotá, 1st Street # 9-85, Colombia, Tel 5713341111, 5713341478, Keywords: acute necrotizing pancreatitis, hypercalcemia, primary Email [email protected] hyperparathyroidism, parathyroid carcinoma Received: May 29, 2017 | Published: June 27, 2017 Abbreviations: HPT, hyperparathyroidism; PHPT, primary (2.5mg/dl) levels. Kidney and liver function tests, albumin and hyperparathyroidism; SPECT, single-photon emission computed to- triglyceride levels were all within normal limits. The patient was mography; CT, computed tomography; iPTH, intact parathyroid hor- treated initially with intravenous fluids and H2 blockers, and no oral mone. -
Clinical Radiation Oncology Review
Clinical Radiation Oncology Review Daniel M. Trifiletti University of Virginia Disclaimer: The following is meant to serve as a brief review of information in preparation for board examinations in Radiation Oncology and allow for an open-access, printable, updatable resource for trainees. Recommendations are briefly summarized, vary by institution, and there may be errors. NCCN guidelines are taken from 2014 and may be out-dated. This should be taken into consideration when reading. 1 Table of Contents 1) Pediatrics 6) Gastrointestinal a) Rhabdomyosarcoma a) Esophageal Cancer b) Ewings Sarcoma b) Gastric Cancer c) Wilms Tumor c) Pancreatic Cancer d) Neuroblastoma d) Hepatocellular Carcinoma e) Retinoblastoma e) Colorectal cancer f) Medulloblastoma f) Anal Cancer g) Epndymoma h) Germ cell, Non-Germ cell tumors, Pineal tumors 7) Genitourinary i) Craniopharyngioma a) Prostate Cancer j) Brainstem Glioma i) Low Risk Prostate Cancer & Brachytherapy ii) Intermediate/High Risk Prostate Cancer 2) Central Nervous System iii) Adjuvant/Salvage & Metastatic Prostate Cancer a) Low Grade Glioma b) Bladder Cancer b) High Grade Glioma c) Renal Cell Cancer c) Primary CNS lymphoma d) Urethral Cancer d) Meningioma e) Testicular Cancer e) Pituitary Tumor f) Penile Cancer 3) Head and Neck 8) Gynecologic a) Ocular Melanoma a) Cervical Cancer b) Nasopharyngeal Cancer b) Endometrial Cancer c) Paranasal Sinus Cancer c) Uterine Sarcoma d) Oral Cavity Cancer d) Vulvar Cancer e) Oropharyngeal Cancer e) Vaginal Cancer f) Salivary Gland Cancer f) Ovarian Cancer & Fallopian -
Multiple Endocrine Neoplasia Type 1 (MEN1)
Lab Management Guidelines v2.0.2019 Multiple Endocrine Neoplasia Type 1 (MEN1) MOL.TS.285.A v2.0.2019 Introduction Multiple Endocrine Neoplasia Type 1 (MEN1) is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline MEN1 Known Familial Mutation Analysis 81403 MEN1 Deletion/Duplication Analysis 81404 MEN1 Full Gene Sequencing 81405 What is Multiple Endocrine Neoplasia Type 1 Definition Multiple Endocrine Neoplasia Type 1 (MEN1) is an inherited form of tumor predisposition characterized by multiple tumors of the endocrine system. Incidence or Prevalence MEN1 has a prevalence of 1/10,000 to 1/100,000 individuals.1 Symptoms The presenting symptom in 90% of individuals with MEN1 is primary hyperparathyroidism (PHPT). Parathyroid tumors cause overproduction of parathyroid hormone which leads to hypercalcemia. The average age of onset is 20-25 years. Parathyroid carcinomas are rare in individuals with MEN1.2,3,4 Pituitary tumors are seen in 30-40% of individuals and are the first clinical manifestation in 10% of familial cases and 25% of simplex cases. Tumors are typically solitary and there is no increased prevalence of pituitary carcinoma in individuals with MEN1.2,5 © eviCore healthcare. All Rights Reserved. 1 of 9 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines v2.0.2019 Prolactinomas are the most commonly seen pituitary subtype and account for 60% of pituitary adenomas. -
Multiple Endocrine Neoplasia Type 2: an Overview Jessica Moline, MS1, and Charis Eng, MD, Phd1,2,3,4
GENETEST REVIEW Genetics in Medicine Multiple endocrine neoplasia type 2: An overview Jessica Moline, MS1, and Charis Eng, MD, PhD1,2,3,4 TABLE OF CONTENTS Clinical Description of MEN 2 .......................................................................755 Surveillance...................................................................................................760 Multiple endocrine neoplasia type 2A (OMIM# 171400) ....................756 Medullary thyroid carcinoma ................................................................760 Familial medullary thyroid carcinoma (OMIM# 155240).....................756 Pheochromocytoma ................................................................................760 Multiple endocrine neoplasia type 2B (OMIM# 162300) ....................756 Parathyroid adenoma or hyperplasia ...................................................761 Diagnosis and testing......................................................................................756 Hypoparathyroidism................................................................................761 Clinical diagnosis: MEN 2A........................................................................756 Agents/circumstances to avoid .................................................................761 Clinical diagnosis: FMTC ............................................................................756 Testing of relatives at risk...........................................................................761 Clinical diagnosis: MEN 2B ........................................................................756 -
Neoplastic Metastases to the Endocrine Glands
27 1 Endocrine-Related A Angelousi et al. Metastases to endocrine 27:1 R1–R20 Cancer organs REVIEW Neoplastic metastases to the endocrine glands Anna Angelousi1, Krystallenia I Alexandraki2, George Kyriakopoulos3, Marina Tsoli2, Dimitrios Thomas2, Gregory Kaltsas2 and Ashley Grossman4,5,6 1Endocrine Unit, 1st Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece 2Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece 3Department of Pathology, General Hospital ‘Evangelismos’, Αthens, Greece 4Department of Endocrinology, OCDEM, University of Oxford, Oxford, UK 5Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK 6Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK Correspondence should be addressed to A Angelousi: [email protected] Abstract Endocrine organs are metastatic targets for several primary cancers, either through Key Words direct extension from nearby tumour cells or dissemination via the venous, arterial and f glands lymphatic routes. Although any endocrine tissue can be affected, most clinically relevant f cancer metastases involve the pituitary and adrenal glands with the commonest manifestations f metastases being diabetes insipidus and adrenal insufficiency respectively. The most common f pituitary primary tumours metastasing to the adrenals include melanomas, breast and lung f adrenal carcinomas, which may lead to adrenal insufficiency in the presence of bilateral adrenal f thyroid involvement. Breast and lung cancers are the most common primaries metastasing to f ovaries the pituitary, leading to pituitary dysfunction in approximately 30% of cases. The thyroid gland can be affected by renal, colorectal, lung and breast carcinomas, and melanomas, but has rarely been associated with thyroid dysfunction. -
Carotid Body Tumor Associated with Primary Hyperparathyroidism
DOI: 10.30928/2527-2039e-20212755 _______________________________________________________________________________________Relato de caso CAROTID BODY TUMOR ASSOCIATED WITH PRIMARY HYPERPARATHYROIDISM TUMOR DO CORPO CAROTÍDEO ASSOCIADO COM HIPERPARATIREOIDISMO PRIMÁRIO Duilio Antonio Palacios1; Ledo Massoni1; Climério Pereira do Nascimento1; Marilia D'Elboux Brescia, TCBC-SP1; Sérgio Samir Arap, TCBC-SP1; Fabio Luiz de Menezes Montenegro, TCBC-SP1. ABSTRACT Introduction: Carotid body tumors (CBT) are an uncommon tumor of head and neck. The associa- tion between this entity with primary hyperparathyroidism (PHPT) is even rarer and few cases have been reported. Case Report: We described two cases of association between CBT and PHPT. The first case was a 55-year-old male patient with Shambling type III malignant paraganglioma and PHPT sin- gle adenoma. The second one was a 56-year-old male patient with Shambling type III paraganglioma and double parathyroid adenoma. Conclusion: The adequate preoperative evaluation allowed to iden- tify and treat simultaneously both neoplasms in these patients without compromising the appropriate treatment. Treatment of the two neoplasms when identified could be performed satisfactorily at the same surgical time. Keywords: Carotid Body Tumor. Hyperparathyroidism. Hypercalcemia. Treatment Outcome. RESUMO Introdução: O paraganglioma de corpo carotídeo (PCC) é um dos tumores menos frequente da cabeça e do pescoço. A associação entre essa entidade e o hiperparatireoidismo primário (HPT) é ainda mais rara e poucos casos foram relatados. Relato do Caso: Relatam-se dois novos casos de PCC e HPT. O primeiro é um paciente de 55 anos com um paraganglioma maligno que envolvia as artérias carótidas interna e externa (Shambling III) e um adenoma de paratireoide. O segundo trata-se de paciente mas- culino de 56 anos, também com tumor Shambling III, mas com duplo adenoma de paratireoide. -
Pituitary Adenomas: from Diagnosis to Therapeutics
biomedicines Review Pituitary Adenomas: From Diagnosis to Therapeutics Samridhi Banskota 1 and David C. Adamson 1,2,3,* 1 School of Medicine, Emory University, Atlanta, GA 30322, USA; [email protected] 2 Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA 3 Neurosurgery, Atlanta VA Healthcare System, Decatur, GA 30322, USA * Correspondence: [email protected] Abstract: Pituitary adenomas are tumors that arise in the anterior pituitary gland. They are the third most common cause of central nervous system (CNS) tumors among adults. Most adenomas are benign and exert their effect via excess hormone secretion or mass effect. Clinical presentation of pituitary adenoma varies based on their size and hormone secreted. Here, we review some of the most common types of pituitary adenomas, their clinical presentation, and current diagnostic and therapeutic strategies. Keywords: pituitary adenoma; prolactinoma; acromegaly; Cushing’s; transsphenoidal; CNS tumor 1. Introduction The pituitary gland is located at the base of the brain, coming off the inferior hy- pothalamus, and weighs no more than half a gram. The pituitary gland is often referred to as the “master gland” and is the most important endocrine gland in the body because it regulates vital hormone secretion [1]. These hormones are responsible for vital bodily Citation: Banskota, S.; Adamson, functions, such as growth, blood pressure, reproduction, and metabolism [2]. Anatomically, D.C. Pituitary Adenomas: From the pituitary gland is divided into three lobes: anterior, intermediate, and posterior. The Diagnosis to Therapeutics. anterior lobe is composed of several endocrine cells, such as lactotropes, somatotropes, and Biomedicines 2021, 9, 494. https: corticotropes, which synthesize and secrete specific hormones. -
New Jersey State Cancer Registry List of Reportable Diseases and Conditions Effective Date March 10, 2011; Revised March 2019
New Jersey State Cancer Registry List of reportable diseases and conditions Effective date March 10, 2011; Revised March 2019 General Rules for Reportability (a) If a diagnosis includes any of the following words, every New Jersey health care facility, physician, dentist, other health care provider or independent clinical laboratory shall report the case to the Department in accordance with the provisions of N.J.A.C. 8:57A. Cancer; Carcinoma; Adenocarcinoma; Carcinoid tumor; Leukemia; Lymphoma; Malignant; and/or Sarcoma (b) Every New Jersey health care facility, physician, dentist, other health care provider or independent clinical laboratory shall report any case having a diagnosis listed at (g) below and which contains any of the following terms in the final diagnosis to the Department in accordance with the provisions of N.J.A.C. 8:57A. Apparent(ly); Appears; Compatible/Compatible with; Consistent with; Favors; Malignant appearing; Most likely; Presumed; Probable; Suspect(ed); Suspicious (for); and/or Typical (of) (c) Basal cell carcinomas and squamous cell carcinomas of the skin are NOT reportable, except when they are diagnosed in the labia, clitoris, vulva, prepuce, penis or scrotum. (d) Carcinoma in situ of the cervix and/or cervical squamous intraepithelial neoplasia III (CIN III) are NOT reportable. (e) Insofar as soft tissue tumors can arise in almost any body site, the primary site of the soft tissue tumor shall also be examined for any questionable neoplasm. NJSCR REPORTABILITY LIST – 2019 1 (f) If any uncertainty regarding the reporting of a particular case exists, the health care facility, physician, dentist, other health care provider or independent clinical laboratory shall contact the Department for guidance at (609) 633‐0500 or view information on the following website http://www.nj.gov/health/ces/njscr.shtml. -
Giant Prolactinoma Causing Hydrocephalus and Intracranial Hypertension As First Manifestations of Multiple Endocrine Neoplasia Type 1
CASE REPORT published: 28 August 2019 doi: 10.3389/fendo.2019.00582 Giant Prolactinoma Causing Hydrocephalus and Intracranial Hypertension as First Manifestations of Multiple Endocrine Neoplasia Type 1 Naiara C. B. Dantas 1, Carlos E. L. Soares 2, Manoel R. A. Martins 1, Delmar M. Lourenço Jr. 3,4† and Ana R. P. Quidute 1,2*† 1 2 Edited by: Walter Cantídio University Hospital, Federal University of Ceará, Fortaleza, Brazil, Faculty of Medicine, Drug Research and 3 Lucio Vilar, Development Center (NPDM), Federal University of Ceará (UFC), Fortaleza, Brazil, Endocrine Genetics Unit (LIM-25), 4 Federal University of Endocrinology Division, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil, Endocrine Pernambuco, Brazil Oncology Division, Institute of Cancer of the State of São Paulo, São Paulo, Brazil Reviewed by: Murat Aydin Sav, Context: Overall, giant prolactinomas are rare tumors (4%), especially those larger Yeditepe University, Turkey Luiz Eduardo Armondi Wildemberg, than 60 mm (1%). Despite the predominance of macroadenoma documented in multiple Instituto Estadual Do Cérebro endocrine neoplasia type 1 (MEN1)-related prolactinoma, only three giant prolactinoma Paulo Niemeyer, Brazil cases were described so far (size > 40 mm and prolactin > 1,000 ng/mL). None of them *Correspondence: was larger than 60 mm or presented hydrocephalus or intracranial hypertension (ICH) as Ana R. P. Quidute [email protected] initial manifestation of MEN1. †These authors have contributed Case Description: A 21-years-old man presented with ICH as the first clinical equally to this work manifestation of MEN1. He harbored a MEN1 germline mutation but refused periodic vigilance after normal hormonal screening at age 14 years.