Heptacarpus Paludicola Class: Malacostraca Order: Decapoda a Broken Back Shrimp Section: Caridea Family: Thoridae

Total Page:16

File Type:pdf, Size:1020Kb

Heptacarpus Paludicola Class: Malacostraca Order: Decapoda a Broken Back Shrimp Section: Caridea Family: Thoridae Phylum: Arthropoda, Crustacea Heptacarpus paludicola Class: Malacostraca Order: Decapoda A broken back shrimp Section: Caridea Family: Thoridae Taxonomy: Local Heptacarpus species (e.g. Antennae: Antennal scale never H. paludicola and H. sitchensis) were briefly much longer than rostrum. Antennular considered to be in the genus Spirontocaris peduncle bears spines on each of the three (Rathbun 1904; Schmitt 1921). However members of Spirontocaris have two or more segments and stylocerite (basal, lateral spine supraorbital spines (rather than only one in on antennule) does not extend beyond the Heptacarpus). Thus a known synonym for H. first segment (Wicksten 2011). paludicola is S. paludicola (Wicksten 2011). Mouthparts: The mouth of decapod crustaceans comprises six pairs of Description appendages including one pair of mandibles Size: Individuals 20 mm (males) to 32 mm (on either side of the mouth), two pairs of (females) in length (Wicksten 2011). maxillae and three pairs of maxillipeds. The Illustrated specimen was a 30 mm-long, maxillae and maxillipeds attach posterior to ovigerous female collected from the South the mouth and extend to cover the mandibles Slough of Coos Bay. (Ruppert et al. 2004). Third maxilliped without Color: Variable across individuals. Uniform expodite and with epipods (Fig. 1). Mandible with extremities clear and green stripes or with incisor process (Schmitt 1921). speckles. Color can be deep blue at night Carapace: No supraorbital spines (Bauer 1981). Adult color patterns arise from (Heptacarpus, Kuris et al. 2007; Wicksten chromatophores under the exoskeleton and 2011) and no lateral or dorsal spines. are related to animal age and sex (e.g. Rostrum: Well-developed, longer mature and breeding females have prominent than carapace, extending beyond antennular color patters) (Bauer 1981). Five morphs peduncle (Fig. 2). Rostral teeth include both were described by Bauer (1981) for both H. dorsal (6–8, seven in current specimen, Fig. sitchensis and H. paludicola, including four 1) and ventral (2–4, two in current specimen, color morphs and one transparent morph. Fig. 1). Dorsal edge of rostrum straight, not Adults may exhibit camouflaging colors based curved with anterior teeth. on surrounding algae (Bauer 1981), but color Teeth: Rostral teeth present (see patterns may be more or less fixed Rostrum). (genetically) and variably expressed in Pereopods: Pereopods 1–2 with different environments (Bauer 1982). epipods. Epipod morphology is particularly General Morphology: The body of decapod relevant to the genus Heptacarpus and crustaceans can be divided into the species with a higher number are considered cephalothorax (fused head and thorax) and ancestral to the group (Bauer 1984b). abdomen. They have a large plate-like Pereopods 3–5 with bifid dactyls with spines carapace dorsally, beneath which are five arranged as follows: merus of pereopod pairs of thoracic appendages (see chelipeds three with five spines, pereopod four with four and pereopods) and three pairs of spines and pereopod five with 2–4 spines maxillipeds (see mouthparts) (Kuris et al. (Wicksten 2011). Second legs chelate, nearly 2007). The abdomen and associated equal, with seven annulations on carpus (Fig. appendages are outstretched in Heptacarpus 1). species and the abdomen usually has a sharp Chelipeds: Equal, chelate (Fig. 1). bend (“broken-back shrimp” Kozloff 1993). Abdomen (Pleon): Shrimp-like, with fantail, Cephalothorax: body laterally compressed. Side plates of Eyes: second segment overlap those of first with Hiebert, T.C. 2015. Heptacarpus paludicola. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12712 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] sharp bend (Fig. 1). The third segment pleura that is rounded, fourth segment with without hump and the sixth segment is shorter tooth and fifth with spine (Wicksten 2011). than telson (Fig. 1). Segments 1–3 with Telson & Uropods: Telson bears 4–5 pairs (Ricketts and Calvin 1971), while H. of dorso-lateral spines (Wicksten 2011) (Fig. paludicola is more common in mudflats and in 1). eelgrass. Sexual Dimorphism: Females often have Heptacarpus taylori, also has a short broader and larger bodies than males, which rostrum, reaching just to the eye and is often have compressed and squat bodies brightly colored, with a series of teeth from (Wicksten 2011). anterior carapace margin to the apex. Heptacarpus brevirostris, with smooth rostrum Possible Misidentifications (without lower teeth) that reaches only the first The family Hippolytidae was split into three segment of the antennal peduncle. The families following a cladistic analysis by merus of H. brevirostris has a single spine on Christoffersen (1987) that are currently pereopods 3–4. Heptacarpus palpator is recognized by some (e.g. Wicksten 2011), but similar to Heptacarpus brevirostris, but with a not all authors (e.g. Kuris et al. 2007). These longer rostrum that can be di- or trifid, and a three families include the Lysmatidae, longer antennal scale (Wicksten 1986). Hippolytidae and Thoridae. The Lysmatidae Heptacarpus stimpsoni, from Puget Sound, are characterized by very long antennular has rostrum that extends over eye (only flagella. The three families can further be slightly), with dorsal teeth and pereopod (3–5) distinguised by the number of carpal articles dactyls that are simple and curved. on the second pereopod: 22 or more in Heptacarpus carinatus is a long-rostrumed Lysmatidae, three in Hippolytidae and seven shrimp, with distal rostral teeth (3–7 dorsal in Thoridae. In addition, Thoridae and and 2–6 ventral) and epipods present on Hippolytidae can be differentiated by their pereopods 1–3. Heptacarpus franciscanus, supraorbital spines, one in the latter and 0–4 from San Francisco Bay, has a rostrum longer in the former family (Wicksten 2011). The than the carapace. Heptacarpus pugettensis, Lysmatidae is represented by a single H. flexus, and H. tenuissimus have a hump on species locally, Lysmata californica (Kuris et the third abdominal segment. Heptacarpus al. 2007; Wicksten 2011). When following the pugettensis has epipods on pereopods 1–2 above taxonomy (Christoffersen 1987; and a rostrum that just reaches the end of the Wicksten 2011), local members of the first segment of antennular peduncle and not Hippolytidae include Hippolyte californiensis beyond. Heptacarpus flexus is and H. clarki. Meanwhile, the genus morphologically similar to H. carinatus, but Heptacarpus, with eleven local species, falls with epipods on pereopods 1–2 only and a within the Thoridae, as do the local species narrow rostrum with teeth (4–5 dorsal and 5– Lebbeus lagunae and Spirontocaris prionota 8 ventral). Heptacarpus tenuissimus lacks (Kuris et al. 2007; Wicksten 2011). teeth on the ventrum of the fourth abdominal Very close in color, morphology, and pleon and also lacks an exopod on the third habitat preference is Heptacarpus sitchensis, maxilliped (see dichotomous key in Wicksten whose adult rostral teeth are 4–8/0–5, but 2011 for Heptacarpus species). whose rostrum, while it can reach to the middle of the antennal scale, does not reach Ecological Information to the end of the scale as does that of H. Range: Type locality is Humboldt Bay, paludicola. The rostral teeth are closer California. Known range includes Tava together on H. sitchensis and the rostrum is Island, Alaska to San Diego, California more slender (Schmitt 1921), as well as being (Schmitt 1921; Wicksten 2011). only equal to or shorter than the carapace. Local Distribution: Coos Bay distribution Our H. sitchensis specimens were only 1.5 near, and south of, the Charleston Bridge in cm, half the size of the female H. paludicola. South Slough. Heptacarpus sitchensis is the most commonly Habitat: South Slough amongst mud and found transparent shrimp in tide pools eelgrass (Zostera, Ulva), also on pilings, Hiebert, T.C. 2015. Heptacarpus paludicola. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. floats and in tide pools of outer coasts (Kuris to microbial fouling and parasites. Grooming et al. 2007; Wicksten 2011). with specialized antennal brushes is found in Salinity: Collected at salinity 30. members of the Stenopodidea, Caridea and Temperature: Dendrobranchiata and suggests a common Tidal Level: Collected at +0.15 m and is ancestor rather than evolutionary intertidal to 10 m depths (Wicksten 2011). convergence (see Bauer 1989). Associates: Abundance: Common to abundant (Schmitt Bibliography 1921; Kuris et al. 2007). 1. BAUER, R. T. 1979. Sex attraction Life-History Information and recognition in the caridean shrimp Reproduction: Ovigerous female found in Heptacarpus Paludicola (Holmes) March, in South Slough, Coos Bay. Males (Decapoda, Hippolytidae). Marine and females may be (weakly) attracted to Behaviour and Physiology. 6:157-174. each other with sex phermones (Bauer 1979), 2. —. 1981. Color patterns of the shrimps but are generally only triggered to initiate Heptacarpus pictus and Heptacarpus copulation after physical contact
Recommended publications
  • Color Patterns of the Shrimps Heptacarpus Pictus and H. Paludicola (Caridea: Hippolytidae)
    MARINE BIOLOGY Marine Biology 64, 141-152 (1981) © Springer-Verlag 1981 Color Patterns of the Shrimps Heptacarpus pictus and H. paludicola (Caridea: Hippolytidae) R. T. Bauer Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution; Washington, D.C. 20560, USA Abstract coloration has been on the isopod Idothea montereyensis Maloney; Lee (1966 a,b, 1972) studied the biochemical Color patterns of the shallow-water shrimps Heptacarpus and cellular bases of color patterns and the ecology of pictus and H. paludicola are formed by chromatosomes color change. However, no caridean shrimp has been (usually termed chromatophores) located beneath the studied so thoroughly. Gamble and Keeble (1900) and translucent exoskeleton. Development of color patterns Keeble and Gamble (1900, 1904) described in detail the is related to size (age) and sex. The color expressed is chromatophores (chromatosomes in the modern usage of determined by the chromatosome pigment dispersion, Elofsson and Kauri, 1971) and coloration of the shrimp arrangement, and density. In populations with well- Hippolyte varians Leach. Chassard-Bouchaud (1965), in developed coloration (//. pictus from Cayucos, California, her extensive work on physiological and morphological 1976-1978,//. paludicola from ArgyleChannel, San Juan color change in caridean shrimp, described the chromato­ Island, Washington, June-July, 1978), prominent somes and illustrated the color morphs of H. varians, coloration was a characteristic of maturing females, Palaemoii squilla (L.), P. serratus (Pennant), Athanas breeding females, and some of the larger males. In the nitescens Leach, and Crangon crangon (L.). Carlisle and Morro Bay, California, population of H. paludicola Knowles (1959) give a brief review of color patterns in (sampled 1976-1978), color patterns were poorly decapod species.
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • First Record of Hippolyte Prideauxiana Leach, 1817 (Crustacea, Decapoda, Caridea) in the Adriatic Sea
    ISSN: 0001-5113 ACTA ADRIAT., UDC: 595.384(497.5 Rijeka) (262.3) AADRAY 47 (1): 85 - 88, 2006 Scientific note First record of Hippolyte prideauxiana Leach, 1817 (Crustacea, Decapoda, Caridea) in the Adriatic Sea Marin KIRINČIĆ Natural History Museum Rijeka, Lorenzov Prolaz 1, 51000 Rijeka, Croatia During the last ten years, several decapod species were recorded in the Adriatic Sea for the first time. Such a rapid increase in the number of recorded species of decapod crustaceans is the result of the increased number of carcinologists engaged in SCUBA diving. In 2002, during the routine Natural History Museum of Rijeka SCUBA fieldwork, the caridean shrimp, Hippolyte prideauxiana Leach, 1817, was collected at Kostrena near the city of Rijeka in the northern Adriatic. This record, the first for the Adriatic Sea, widens the previously known geographic distribution of this species. Key words: Decapoda, Hippolyte prideauxiana, Adriatic Sea, first finding INTRODUCTION surface-operated gears. Earlier research was mostly based on material collected with trawl In recent years, the number of decapod species gears and grabs on circa-littoral and lower infra- recorded in the Adriatic Sea has continually littoral soft grounds. increased despite the fact that the Adriatic Sea is one of the most thoroughly explored METHODS AND RESULTS regions in the Mediterranean (HELLER, 1863; PESTA, 1918; ŠTEVČIĆ, 1990, 1995, 2002; KIRINČIĆ, The 2002 field research was conducted by 2003). The main reason for the recent finding the Natural History Museum of Rijeka in the of previously unrecorded species in this area northern Adriatic (Fig.1). The shrimps were is the use by carcinologists of SCUBA diving collected by SCUBA diving across the transect equipment to collect decapods.
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • Records of Species of the Hippolytid Genus Lebbeus White, 1847
    Zootaxa 3241: 35–63 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Records of species of the hippolytid genus Lebbeus White, 1847 (Crustacea: Decapoda: Caridea) from hydrothermal vents in the Pacific Ocean, with descriptions of three new species TOMOYUKI KOMAI1, SHINJI TSUCHIDA2 & MICHEL SEGONZAC3 1Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan. E-mail: [email protected] 2Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061 Japan. E-mail: [email protected] 3Muséum national d'Histoire naturelle, Département Milieux et Peuplements Aquatiques, 61 rue Buffon, 75005 Paris, France. E-mail: [email protected] Abstract Five species of the hippolytid shrimp genus Lebbeus White, 1847 are reported from various deep-water hydrothermal vent sites in the Pacific Ocean: L. laurentae Wicksten, 2010 from the East Pacific Rise 13°N; L. wera Ahyong, 2009 from the Brothers Seamount, Kermadec Ridge, New Zealand; L. pacmanus sp. nov. from the Manus Basin, Bismarck Sea; L. shinkaiae sp. nov. from the Okinawa Trough, Japan; and L. thermophilus sp. nov. from the Manus and Lau basins, south- western Pacific. Lebbeus laurentae is fully redescribed because the original and subsequent descriptions are not totally detailed. Differentiating characters among the three new species and close allies are discussed. Previous records of Leb- beus species from hydrothermal vents are reviewed. Key words: Crustacea, Decapoda, Caridea, Hippolytidae, Lebbeus, new species, hydrothermal vents, Pacific Ocean Introduction The hippolytid shrimp genus Lebbeus White, 1847 is currently represented by 57 species (De Grave & Fransen 2011), many of which are distributed in the high latitudinal areas in the North Pacific.
    [Show full text]
  • Lysmata Jundalini, a New Peppermint Shrimp (Decapoda, Caridea, Hippolytidae) from the Western Atlantic
    Zootaxa 3579: 71–79 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:C736A8DE-9BD7-4AE2-BC42-425C8F0D3F3B Lysmata jundalini, a new peppermint shrimp (Decapoda, Caridea, Hippolytidae) from the Western Atlantic ANDREW L. RHYNE1,2,5, RICARDO CALADO3 & ANTONINA DOS SANTOS4 1Department of Biology and Marine Biology, Roger Williams University, One Old Ferry Road, Bristol, RI 02809, USA 2New England Aquarium, Research Department, New England Aquarium, One Central Wharf Boston, MA 02110 3Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal 4Instituto Nacional de Recursos Biológicos - IPIMAR, Avenida de Brasilia s/n, 1449-006 Lisbon, Portugal 5Corresponding author. E-mail: [email protected] Abstract A new peppermint shrimp species, Lysmata jundalini sp. nov., is described based on five specimens collected in shallow subtidal waters on Enrique Reef at the University of Puerto Rico, Mayagüez Isla, Magueyes Laboratories. Lysmata jund- alini sp. nov. was identified from fresh material collected at the reef crest and back reef among coral rubble in June 2005 and April 2009. The new species is most closely related to the Atlantic Lysmata intermedia and eastern Pacific L. holthu- isi. It can be readily distinguished from all those in the genus Lysmata by its color pattern, the presence of a well developed accessory branch, the number of free vs. fused segments of the accessory branch, the number of carpal segments of the second pereiopod and well developed pterygostomian tooth. Key words: Hermaphrodite, Lysmata intermedia complex, cryptic taxa Introduction The caridean shrimp genus Lysmata Risso, 1816 is commonly placed within the family Hippolytidae Bate, 1888.
    [Show full text]
  • Effects of CO2-Induced Ph Reduction on the Exoskeleton Structure and Biophotonic Properties of the Shrimp Lysmata Californica
    UC San Diego UC San Diego Previously Published Works Title Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Permalink https://escholarship.org/uc/item/3mj6d2n4 Journal Scientific reports, 5(1) ISSN 2045-2322 Authors Taylor, Jennifer RA Gilleard, Jasmine M Allen, Michael C et al. Publication Date 2015-06-01 DOI 10.1038/srep10608 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic Received: 10 November 2014 Accepted: 07 April 2015 properties of the shrimp Lysmata Published: 01 June 2015 californica Jennifer R. A. Taylor1, Jasmine M. Gilleard2, Michael C. Allen1 & Dimitri D. Deheyn1 The anticipated effects of CO2-induced ocean acidification on marine calcifiers are generally negative, and include dissolution of calcified elements and reduced calcification rates. Such negative effects are not typical of crustaceans for which comparatively little ocean acidification research has been conducted. Crustaceans, however, depend on their calcified exoskeleton for many critical functions. Here, we conducted a short-term study on a common caridean shrimp, Lysmata californica, to determine the effect of CO2-driven reduction in seawater pH on exoskeleton growth, structure, and mineralization and animal cryptic coloration. Shrimp exposed to ambient (7.99 ± 0.04) and reduced pH (7.53 ± 0.06) for 21 days showed no differences in exoskeleton growth (percent increase in carapace length), but the calcium weight percent of their cuticle increased significantly in reduced pH conditions, resulting in a greater Ca:Mg ratio.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Lebbeus Rubrodentatus Sp. Nov. (Crustacea: Caridea: Hippolytidae) from the Australian North West Shelf
    The Beagle, Records of the Museums and Art Galleries of the Northern Territory, 2010 26: 75–77 Lebbeus rubrodentatus sp. nov. (Crustacea: Caridea: Hippolytidae) from the Australian North West Shelf A. J. BRUCE Curator Emeritus, Museum and Art Gallery of the Northern Territory. Present address: Queensland Museum, PO Box 3300, South Brisbane, QLD 4101, AUSTRALIA [email protected] ABSTRACT A new species of the hippolytid genus Lebbeus White, 1847, L. rubrodentatus sp. nov., is described and illustrated. Its colour pattern in life is diagnostic. The single specimen was sorted from a benthic trawl sample obtained in 360–396 m in the Timor Sea. A key to the five carinate species of the large genusLebbeus is provided. KEYWORDS: Lebbeus rubrodentatus, new species, Decapoda, Hippolytidae, Timor Sea. INTRODUCTION SYSTEMATICS A recent paper by McCallum & Poore (2010) reported Family Hippolytidae Bate, 1888 on the carinate species of Lebbeus White, 1847 (i.e., those Genus Lebbeus White, 1847 species possessing a high, bilaterally compressed dorsal keel Gender masculine. Type species, by monotypy, Lebbeus on the carapace) with particular reference to the Australian orthorhynchus (Leach mss) White, 1847 (= Alpheus polaris species. Two new species, L. clarehannah McCallum & Sabine, 1824). Recent, Circum‑Arctic. The genus name Poore, 2010 and L. cristagalli McCallum & Poore, 2010, Lebbeus White, 1847 has been conserved under the Plenary were described and illustrated in detail. In the remarks on L. Powers of the International Commission on Zoological cristagalli it was noted that one specimen was significantly Nomenclature and placed on the Official List of Generic different from the 10 type specimens, none of which had the Names in Zoology (ICZN 1963: Opinion 671).
    [Show full text]
  • The Oceanic Crabs of the Genera Planes and Pachygrapsus
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued IflfNvA-QJsl|} by ^e SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 101 Washington: 1951 No. 3272 THE OCEANIC CRABS OF THE GENERA PLANES AND PACHYGRAPSUS By FENNEB A. CHACE, Jr. ON September 17, 1492, at latitude approximately 28° N. and longitude 37° W., Columbus and his crew, during their first voyage to the New World, "saw much more weed appearing, like herbs from rivers, in which they found a live crab, which the Admiral kept. He says that these crabs are certain signs of land . "(Markham, 1893, p. 25). This is possibly the first recorded reference to oceanic crabs. Whether it refers to Planes or to the larger swimming crab, Portunus (Portunus) sayi (Gibbes), which is seldom found this far to the east, may be open to question, but the smaller and commoner Planes is frequently called Columbus's crab after this item in the discov­ erer's diary. Although these crabs must have been a source of wonder to mariners on the high seas in the past as they are today, the first adequate description of them did not appear until more than two centuries after Columbus's voyage when Sloane (1725, p. 270, pi. 245, fig. 1) recorded specimens from seaweed north of Jamaica. A short time later Linnaeus (1747, p. 137, pi. 1, figs. 1, a-b) described a similar form, which he had received from a Gflteborg druggist and which was reputed to have come from Canton. This specimen, which Linnaeus named Cancer cantonensis, may he the first record of the Pacific Planes cyaneus.
    [Show full text]
  • Effect of Microalgal Food on the Sex Reversal of Hippolyte Inermis (Crustacea: Decapoda)
    MARINE ECOLOGY PROGRESS SERIES Vol. 201: 251–259, 2000 Published August 9 Mar Ecol Prog Ser Effect of microalgal food on the sex reversal of Hippolyte inermis (Crustacea: Decapoda) Valerio Zupo* Stazione Zoologica ‘A. Dohrn’ di Napoli, Laboratorio di Ecologia del Benthos, Punta San Pietro, 80077 Ischia (Naples), Italy ABSTRACT: The effect of diatoms of the genus Cocconeis on the sex reversal of the shrimp Hippolyte inermis Leach was examined in the laboratory. Randomised experiments were carried out to investi- gate the functional response of shrimps to various diets. The benthic diatom Cocconeis neothumensis was offered, alternatively, during the larval phase and during the postlarval phase, and the results obtained with shrimps produced by individual females were compared. Results demonstrated that di- ets based on green alga Enteromorpha sp. or dry commercial food did not influence the normal protandric development, as most shrimps at sexual maturation were males. Conversely, diets contain- ing C. neothumensis did influence the protandric development, as most shrimps at sexual maturation were females and the sex ratio was significantly different from that obtained with diets not containing C. neothumensis. These results provide an explanation of the patterns observed in the field, and are in accordance with the seasonal abundances of diatoms in the leaf stratum of Posidonia oceanica. KEY WORDS: Diatom · Shrimp · Sex change · Adaptation · Feeding Resale or republication not permitted without written consent of the publisher INTRODUCTION (Mazzella & Ott 1984); large females (‘alpha’ females, derived from sex reversal) first develop as males in The shrimp Hippolyte inermis Leach lives in sea- September, during the period of minimum field abun- grass meadows (Zariquiei Alvarez 1968, Guillen Nieto dance of epiphytic diatoms.
    [Show full text]
  • Benvenuto, C and SC Weeks. 2020
    --- Not for reuse or distribution --- 8 HERMAPHRODITISM AND GONOCHORISM Chiara Benvenuto and Stephen C. Weeks Abstract This chapter compares two sexual systems: hermaphroditism (each individual can produce gametes of either sex) and gonochorism (each individual produces gametes of only one of the two distinct sexes) in crustaceans. These two main sexual systems contain a variety of alternative modes of reproduction, which are of great interest from applied and theoretical perspectives. The chapter focuses on the description, prevalence, analysis, and interpretation of these sexual systems, centering on their evolutionary transitions. The ecological correlates of each reproduc- tive system are also explored. In particular, the prevalence of “unusual” (non- gonochoristic) re- productive strategies has been identified under low population densities and in unpredictable/ unstable environments, often linked to specific habitats or lifestyles (such as parasitism) and in colonizing species. Finally, population- level consequences of some sexual systems are consid- ered, especially in terms of sex ratios. The chapter aims to provide a broad and extensive overview of the evolution, adaptation, ecological constraints, and implications of the various reproductive modes in this extraordinarily successful group of organisms. INTRODUCTION 1 Historical Overview of the Study of Crustacean Reproduction Crustaceans are a very large and extraordinarily diverse group of mainly aquatic organisms, which play important roles in many ecosystems and are economically important. Thus, it is not surprising that numerous studies focus on their reproductive biology. However, these reviews mainly target specific groups such as decapods (Sagi et al. 1997, Chiba 2007, Mente 2008, Asakura 2009), caridean Reproductive Biology. Edited by Rickey D. Cothran and Martin Thiel.
    [Show full text]