Systematics, Phylogeny and Biogeography of Juncaginaceae

Total Page:16

File Type:pdf, Size:1020Kb

Systematics, Phylogeny and Biogeography of Juncaginaceae Systematics, phylogeny and biogeography of Juncaginaceae Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften“ am Fachbereich Biologie der Johannes Gutenberg‐Universität Mainz Sabine von Mering geb. in Erfurt Mainz, Juni 2013 Dekan: 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: Triglochin maritima L. Saltmarsh in Denmark (Photo: SvM). “For there are some plants which cannot live except in wet; and again these are distinguished from one another by their fondness for different kinds of wetness; so that some grow in marshes, others in lakes, others in rivers, others even in the sea […]. Some are water plants to the extent of being submerged, while some project a little from the water; of some again the roots and a small part of the stem are under the water, but the rest of the body is altogether above it.” Theophrastus (370‐c. 285 B.C.) on aquatic plants in Enquiry into Plants (Historia Plantarum) TABLE OF CONTENTS INTRODUCTION 1 CHAPTER 1: Phylogeny, systematics, and recircumscription of Juncaginaceae – a cosmopolitan wetland family 7 CHAPTER 2: Phylogeny, biogeography and evolution of Triglochin L. (Juncaginaceae) – morphological diversification is linked to habitat shifts rather than to genetic diversification 25 CHAPTER 3: Revision of the Mediterranean and southern African Triglochin bulbosa complex (Juncaginaceae) 51 CHAPTER 4: Tetroncium and its only species T. magellanicum (Juncaginaceae): distribution, ecology and lectotypification 91 CHAPTER 5: Morphology of Maundia supports its isolated phylogenetic position in the early‐divergent monocot order Alismatales 103 CONCLUSIONS AND OUTLOOK 141 REFERENCES 143 APPENDICES 169 Appendix 1. List of accession (Chapter 1) Appendix 2. Voucher information (Chapter 2) Appendix 3. PCR information (Chapter 2) Appendix 4. List of studied specimens of Tetroncium magellancium Willd. (Chapter 4) Appendix 5. List of studied specimens of Maundia triglochinoides F.Muell. (Chapter 5) Appendix 6. Identification keys for Triglochin in Europe SUMMARY 189 ZUSAMMENFASSUNG 191 LEBENSLAUF ACKNOWLEDGEMENTS Publications arising from this thesis Chapter 1 of this thesis has been published in the peer‐review proceedings of the Monocots IV conference (Copenhagen, 2008): von Mering S. & Kadereit J. W. 2010: Phylogeny, systematics and recircumscription of Juncaginaceae – a cosmopolitan wetland family. – Pp. 55–79 in: Seberg O., Petersen G., Barfod A. S. & Davis J. I. (ed.), Diversity, phylogeny, and evolution in the monocotyledons – Proceedings of the Fourth International Conference on the Comparative Biology of the Monocotyledons and the Fifth International Symposium on Grass Systematics and Evolution. – Aarhus: Aarhus University Press. Chapter 2 of this thesis will be submitted to Molecular Phylogenetics and Evolution: von Mering S. & Kadereit J. W. Phylogeny, biogeography and evolution of Triglochin L. (Juncaginaceae) – morphological diversification is linked to habitat shifts rather than to genetic diversification. Chapter 3 of this thesis has been published in the Edinburgh Journal of Botany: Köcke A. V.*, von Mering S.*, Mucina L. & Kadereit J. W. 2010: Revision of the Mediterranean and southern African Triglochin bulbosa complex (Juncaginaceae). – Edinburgh Journal of Botany 67: 353–398. DOI: 10.1017/S0960428610000041. *These authors contributed equally to this publication. Chapter 4 of this thesis has been published in Willdenowia: von Mering S. 2013: Tetroncium and its only species T. magellanicum (Juncaginaceae): distribution, ecology and lectotypification. – Willdenowia 43: 13–24. DOI: 10.3372/wi.43. 43102. Chapter 5 of this thesis will be published in the Botanical Journal of the Linnean Society: Sokoloff, D. D., von Mering, S.*, Jacobs, S. W. L. & Remizowa, M. V. 2013 (in press): Flower structure of Maundia supports its isolated phylogenetic position in the early‐divergent monocot order Alismatales. – Bot. J. Linn. Soc. * SvM conducted morphological studies on herbarium material of Maundia and related taxa, gathered characters and literature information for Maundia and related taxa, and worked on the manuscript. Introduction Introduction The monocot order Alismatales is a cosmopolitan and highly diverse group comprising 13 (APG III 2009) or 14 families with about 166 genera and ~4500 species (Stevens 2001+; Table 1 in Chapter 1). It forms a well supported monophyletic clade (APG II 2003, APG III 2009, Soltis et al. 2005 and references therein) and the current circumscription includes well‐known groups such as the species‐rich and highly diverse Arum family (Araceae; e.g., Cabrera et al. 2008, Cusimano et al. 2011) as well as all marine flowering plants (seagrasses; e.g., den Hartog 1970, Green & Short 2003). Molecular phylogenetic studies have shown that Araceae are sister to all remaining families of the order, and within the latter group Tofieldiaceae are sister to the so‐called ‘core Alismatales’ (e.g., Les et al. 1997, Chase et al. 2006, Iles et al. 2013, Les & Tippery 2013). ‘Core Alismatales’ (e.g., Iles et al. 2013), approximately corresponding to the traditional order Helobiae (Engler 1909), is a morphologically highly diverse monophyletic group of aquatic and wetland plants found in all regions of the world. Core Alismatales can be divided into two informal groups based on floral character‐ istics: a “petaloid” and a “tepaloid” clade (Posluszny & Charlton 1993). While petaloid alismatids comprise the three families Hydrocharitaceae, Butomaceae, and Alismataceae (incl. Limnochari‐ taceae), tepaloid alismatids comprise the following eight families: Scheuchzeriaceae, Apono‐ getonaceae, Juncaginaceae, Posidoniaceae, Cymodoceaceae, Ruppiaceae, Potamogetonaceae, and Zosteraceae. As an early‐diverging monocot lineage, Alismatales are one key to the understanding of monocot evolution. Several studies of members of Alismatales have concentrated on comparative flower morphology and development (e.g., Posluszny & Charlton 1993, Posluszny et al. 2000, Remizowa et al. 2012b). However, some taxa have been overlooked by researchers and very little information about their biology is available in the literature. Among those poorly known taxa is the small arrowgrass family Juncaginaceae Rich., a family of annual or perennial grass‐like herbs characterised by basal, sheathing leaves and spike‐like inflorescences (Fig. 1) and underground storage organs such as bulbs, rhizomes, stolons, or tuberous roots. The family Juncaginaceae was established at the beginning of the 19th century when Louis Claude Marie Richard used the name “Juncagines” and gave the following short description plus a French translation of it: “Juncagines. Caps 2. Sperma s. Akenium: Sem. erectum. Embryo perispermi‐ cus, orthotropus, brachypodus.” (Richard 1808). Some years later, Richard listed the following genera comprising “Juncagineae”: Lilaea, Cathanthes [a synonym of Tetroncium], Triglochin, Scheuchzeria (Richard 1815). Juncaginaceae is a conserved name (nomen conservandum, nom. cons.). Circum‐ scription of the family and delimitation of genera have changed considerably since Richard’s times. More details on the history of classification are given in Chapter 1 (see also Table 1 in Chapter 1). The last comprehensive study of the family dates back to the beginning of the 20th century (Buchenau 1903). Few broader studies focussing on members of the family were published afterwards; publications were mostly restricted to regional studies (e.g., Markgraf 1981, Haynes 2004) or focussing on one or few taxa (e.g., Davy & Bisphop 1991). Notable exceptions are the revision of the tuberous‐rooted Triglochin species (Aston 1993, 1995) and the recent treatment for the Flora of Australia (Aston 2011) covering a major part of the family. 1 Introduction The number of accepted genera in Juncaginaceae has varied between three and five (e.g., Dahlgren et al. 1985, Takhtajan 1997, Haynes et al. 1998) and species numbers range from 12 to 15 (e.g., Haynes et al. 1998, Stevens 2001+, Mabberley 2008). However, these data are based on limited information and considerably underestimate the real number of species. Recent treatments have shown that the number of recognised species exceeds 30 (e.g., Köcke et al. 2010; Aston 1993, 1995, 2011). The family Juncaginaceae has an almost cosmopolitan distribution, with a notable gap in large parts of the tropics (for a distribution map see Fig. 1 in Chapter 1). Australia is the centre of species diversity with about 26 species in 3 genera (Aston 2011). Australian taxa include a group of annual Triglochin species and the Triglochin procera complex [Cycnogeton] (Aston 2011). Further species are native to the southern hemisphere: several taxa of the Triglochin bulbosa complex are endemic to South Africa (see Chapter 3; Fig. 1), and the monotypic Tetroncium is restricted to southern South America (see Chapter 4; Fig. 1). While some species are widespread in temperate or cooler regions of both hemispheres (e.g., T. palustris, T. maritima) others are restricted to small areas (e.g., T. gaspensis, T. buchenaui). Despite its small size, the family shows considerable ecological diversity. Members of Juncaginaceae are wind‐pollinated herbs which can be found in freshwater wetlands (slow‐flowing rivers, bogs, fens), in brackish water (e.g., estuaries), and in coastal salt marshes. Some taxa inhabit only seasonally wet terrestrial sites such as vernal pools or inland salt pans (e.g., annual species of Triglochin, T. bulbosa L. subspp.). Species of the T. procera complex (Cycnogeton)
Recommended publications
  • Halophila Ovalis, Ruppia Megacarpa and Posidonia Coriacea
    Edith Cowan University Research Online Theses : Honours Theses 1998 The in vitro propagation of seagrasses : halophila ovalis, ruppia megacarpa and posidonia coriacea Melissa Grace Henry Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Botany Commons, and the Marine Biology Commons Recommended Citation Henry, M. G. (1998). The in vitro propagation of seagrasses : halophila ovalis, ruppia megacarpa and posidonia coriacea. https://ro.ecu.edu.au/theses_hons/742 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/742 THE IN VITRO PROPAGATION OF SEAGRASSES: HALOPHILA OVALIS, RUPPIA MEGACARPA AND POSIDONIA CORIACEA MELISSA GRACE HENRY THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF B.SC. (BIOLOGICAL SCIENCE) HONOURS SCHOOL OF NATURAL SCIENCES EDITH COW AN UNIVERSITY JUNE 1998 ABSTRACT Seagrass communities are of high ecological and economic significance. They provide a nursery area for commercial and recreational juvenile fish and crustacea. Seagrasses also play an important role in influencing the structure and function of many estuarine and nearshore marine environments. Unfortunately, the decline of seagrasses, as a result of human impact, has increased in recent years. This decline has become a major problem throughout the world. Current methods used to restore degraded seagrass beds are limited, the most promising being transplanting material from healthy donor beds. This approach is expensive because it is labor intensive and damages the donor bed. Consequently, large scale transplanting programmes are not considered to be feasible. An alternative to using donor material may be found in the propagation of seagrasses.
    [Show full text]
  • Supplementary Materialsupplementary Material
    10.1071/BT13149_AC © CSIRO 2013 Australian Journal of Botany 2013, 61(6), 436–445 SUPPLEMENTARY MATERIAL Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records Joseph T. MillerA,E, Daniel J. MurphyB, Simon Y. W. HoC, David J. CantrillB and David SeiglerD ACentre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia. BRoyal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia. CSchool of Biological Sciences, Edgeworth David Building, University of Sydney, Sydney, NSW 2006, Australia. DDepartment of Plant Biology, University of Illinois, Urbana, IL 61801, USA. ECorresponding author. Email: [email protected] Table S1 Materials used in the study Taxon Dataset Genbank Acacia abbreviata Maslin 2 3 JF420287 JF420065 JF420395 KC421289 KC796176 JF420499 Acacia adoxa Pedley 2 3 JF420044 AF523076 AF195716 AF195684; AF195703 Acacia ampliceps Maslin 1 KC421930 EU439994 EU811845 Acacia anceps DC. 2 3 JF420244 JF420350 JF419919 JF420130 JF420456 Acacia aneura F.Muell. ex Benth 2 3 JF420259 JF420036 JF420366 JF419935 JF420146 KF048140 Acacia aneura F.Muell. ex Benth. 1 2 3 JF420293 JF420402 KC421323 JQ248740 JF420505 Acacia baeuerlenii Maiden & R.T.Baker 2 3 JF420229 JQ248866 JF420336 JF419909 JF420115 JF420448 Acacia beckleri Tindale 2 3 JF420260 JF420037 JF420367 JF419936 JF420147 JF420473 Acacia cochlearis (Labill.) H.L.Wendl. 2 3 KC283897 KC200719 JQ943314 AF523156 KC284140 KC957934 Acacia cognata Domin 2 3 JF420246 JF420022 JF420352 JF419921 JF420132 JF420458 Acacia cultriformis A.Cunn. ex G.Don 2 3 JF420278 JF420056 JF420387 KC421263 KC796172 JF420494 Acacia cupularis Domin 2 3 JF420247 JF420023 JF420353 JF419922 JF420133 JF420459 Acacia dealbata Link 2 3 JF420269 JF420378 KC421251 KC955787 JF420485 Acacia dealbata Link 2 3 KC283375 KC200761 JQ942686 KC421315 KC284195 Acacia deanei (R.T.Baker) M.B.Welch, Coombs 2 3 JF420294 JF420403 KC421329 KC955795 & McGlynn JF420506 Acacia dempsteri F.Muell.
    [Show full text]
  • Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations
    Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids.
    [Show full text]
  • Campanulaceae) Based on ITS and Tranl-F Sequence Data: Implications for a Reclassification
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of the Western Cape Research Repository Cupido, C. N. et al. (2013). Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and tranL-F sequence data: implications for a reclassification. Systematic Botany, 38(2): 523 – 535 http:// doi.org/10.1600/036364413X666714 dx. Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and trnL-F sequence data: implications for a reclassification Christopher N. Cupido , Jessica M. Prebble , and William M. M. Eddie Abstract The Campanulaceae: Wahlenbergioideae currently comprises 15 genera, one of which, Wahlenbergia, is widespread over the southern continents. Southern Africa is the region with maximum wahlenbergioid diversity with 12 genera and approximately 252 species. A second center is Australasia with 38 Wahlenbergia species. This study used a broad sample of wahlenbergioid diversity from South Africa, Australia, and New Zealand to reconstruct a phylogeny based on chloroplast trnL-F and nuclear ITS sequences. Data were analyzed separately and in combination using parsimony and Bayesian methods. The results suggest that for the wahlenbergioids to be monophyletic Wahlenbergia hederacea has to be excluded and that none of the South African, Australian or New Zealand lineages are strictly monophyletic. There are five species assemblages that are in some disagreement with current classification in the family. Wahlenbergia, Prismatocarpus and Roella are shown to be non-monophyletic and implications for a reclassification are presented. Careful consideration of morphological characters is suggested before the adjustment of generic circumscriptions can be accomplished. Recent family-wide molecular phylogenetic studies have supported the view that the Campanulaceae s.s.
    [Show full text]
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Paleoecology of Late Quaternary Deposits in Chiloe Continental, Chile
    Revista Chilena de Historia Natural 65:235-245,1992 Paleoecology of Late Quaternary Deposits in Chiloe Continental, Chile Paleoecología de los dep6sitos del Cuaternario tardio en Chiloe Continental, Chile 1 2 3 CALVIN J. HEUSSER , LINDA E. HEUSSER and ARTURO HAUSER 1 Clinton Woods, Tuxedo, New York 10987, USA. 2 Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964, USA. 3 Servicio Nacional de Geologia y Mineria, Casilla 10465, Santiago, Chile. ABSTRACT Two stratigraphic records of the late Quaternary vegetation and paleoenvironmental setting of Chiloe Continental, heretofore unstudied, are from (1) a 7.2 m deposit of mire peat at Cuesta Moraga (43025's), dated at 12,310 yr B.P. and interrupted by multiple tephra layers, resting on glacial drift, and (2) a 3-m road cut near Chaiten (42°54'S), 75 km north of Cuesta Moraga, containing a peat bed with wood, dated 11,850 yr B.P., underlying a thick tephra layer and overlying drift. Records are of fossil pollen, spores, and matrix macroremains, loss on ignition, lithology, and ra- diocarbon chronology. There is throughout in the data no indication of fire in predominantly Nothofagus forest com- munities, which during the late-glacial at Chaiten contained, among other tree species, Drimys, Pseudopanax, and Po- docarpus. At Cuesta Moraga, where the forest was relatively open and continued to be open during the Holocene, late- glacial ground cover of Empetrum, Gunnera, and polypodiaceous ferns was supplanted on the mire largely by mi- nerotrophic Cyperaceae until about 8,000 yr B.P.; later, especially after 5,000 yr B.P., ombrotrophic cushion plants, notably Astelia, Donatia, and Tetroncium, with Dacrydium, proliferated on the surface of the mire.
    [Show full text]
  • Population Genetic Structure and Phylogeography of Invasive Aquatic Weed, Elodea Canadensis (Hydrocharitaceae) and Comparative Analyses with E
    Population genetic structure and phylogeography of invasive aquatic weed, Elodea canadensis (Hydrocharitaceae) and comparative analyses with E. nuttallii Tea Huotari Department of Agricultural Sciences Faculty of Agriculture and Forestry University of Helsinki Finland academic dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in Auditorium 1041, Biocenter 2 (Viikinkaari 5, Helsinki), on October 5th, 2012, at 12 noon. helsinki 2012 Supervised by: Dr Helena Korpelainen Department of Agricultural Sciences University of Helsinki, Finland Dr Elina Leskinen Department of Environmental Sciences University of Helsinki, Finland Reviewed by: Dr Jouni Aspi Department of Biology University of Oulu, Finland Dr Alain Vanderpoorten Department of Life Sciences University of Liége, Belgium Examined by: Prof. Katri Kärkkäinen The Finnish Forest Research Institute Oulu, Finland Custos: Prof. Teemu Teeri Department of Agricultural Sciences University of Helsinki, Finland © Wiley (Chapter I) © Springer (Chapter II) © Elsevier (Chapter III) © Authors (Chapter IV) © Hanne Huotari (Layout) isbn 978-952-10-8258-0 (paperback) isbn 978-952-10-8259-7 (pdf) Yliopistopaino Helsinki, Finland 2012 Äidille List of original publications this thesis is based on the following publications and a manuscript, which are referred to in the text by their Roman numerals: I Huotari, T., Korpelainen, H. and Kostamo, K. 2010. Development of microsatellite markers for the clonal water weed Elodea canadensis (Hydrocharitaceae) using inter-simple sequence repeat (ISSR) primers. – Molecular Ecology Resources 10: 576–579. II Huotari, T., Korpelainen, H., Leskinen, E. and Kostamo, K. 2011. Population genetics of invasive water weed Elodea canadensis in Finnish waterways.
    [Show full text]
  • University of Groningen Fen Mires with Cushion Plants in Bale
    University of Groningen Fen Mires with cushion plants in Bale Mountains, Ethiopia Dullo, B.W.; Grootjans, A. P.; Roelofs, J.G.M; Senbeta, A.F.; Fritz, C. Published in: Mires and Peat IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Dullo, B. W., Grootjans, A. P., Roelofs, J. G. M., Senbeta, A. F., & Fritz, C. (2015). Fen Mires with cushion plants in Bale Mountains, Ethiopia. Mires and Peat, 15, 1-10. [UNSP 07]. http://mires-and- peat.net/pages/volumes/map15/map1507.php Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Aponogeton Pollen from the Cretaceous and Paleogene of North America and West Greenland: Implications for the Origin and Palaeobiogeography of the Genus☆
    Review of Palaeobotany and Palynology 200 (2014) 161–187 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Research paper Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: Implications for the origin and palaeobiogeography of the genus☆ Friðgeir Grímsson a,⁎, Reinhard Zetter a, Heidemarie Halbritter b, Guido W. Grimm c a University of Vienna, Department of Palaeontology, Althanstraße 14 (UZA II), Vienna, Austria b University of Vienna, Department of Structural and Functional Botany, Rennweg 14, Vienna, Austria c Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 Stockholm, Sweden article info abstract Article history: The fossil record of Aponogeton (Aponogetonaceae) is scarce and the few reported macrofossil findings are in Received 15 January 2013 need of taxonomic revision. Aponogeton pollen is highly diagnostic and when studied with light microscopy Received in revised form 4 September 2013 (LM) and scanning electron microscopy (SEM) it cannot be confused with any other pollen types. The fossil Accepted 22 September 2013 Aponogeton pollen described here represent the first reliable Cretaceous and Eocene records of this genus world- Available online 3 October 2013 wide. Today, Aponogeton is confined to the tropics and subtropics of the Old World, but the new fossil records show that during the late Cretaceous and early Cenozoic it was thriving in North America and Greenland. The Keywords: Alismatales late Cretaceous pollen record provides important data for future phylogenetic and phylogeographic studies Aponogetonaceae focusing on basal monocots, especially the Alismatales. The Eocene pollen morphotypes from North America aquatic plant and Greenland differ in morphology from each other and also from the older Late Cretaceous North American early angiosperm pollen morphotype, indicating evolutionary trends and diversification within the genus over that time period.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]
  • Proposed Aggeneis-Paulputs 400 Kv Transmission Powerline and Substation Upgrades, Namaqua & Siyanda Districts, Northern Cape Province
    PALAEONTOLOGICAL HERITAGE ASSESSMENT: DESKTOP STUDY Proposed AggeneIs-Paulputs 400 kV TransmIssion PowerlIne and SubstatIon Upgrades, Namaqua & SIyanda DistrIcts, Northern Cape ProvInce John E. Almond PhD (Cantab.) Natura Viva cc, PO Box 12410 Mill Street, Cape Town 8010, RSA [email protected] November 2017 EXECUTIVE SUMMARY Eskom is proposing to construct a new 400 kV transmission powerline of about 100 km length between the existing Aggeneis substation near Aggeneys to the existing Paulputs substation near Pofadder, Namaqua & Siyanda Districts, Northern Cape Province. Three route alignments (Corridors 1, 2 & 3) are currently under consideration, with a possible short deviation (3A) in the case of Corridor 3. The electrical infrastructure project will also entail upgrading the existing Aggeneis and Paulputs Substations with concomitant small increases in their footprints. The powerline and substation study area is underlain at depth by igneous and metamorphic basement rocks of Precambrian age as well as by a mantle of varied superficial deposits such as aeolian sands, gravels and alluvium of the Pleistocene to Recent Kalahari Group. In terms of palaeontological sensitivity outcrop areas of basement rocks are negligible while the overlying Late Caenozoic superficial deposits are generally of low to very low sensitivity. No highly-sensitive palaeontological sites or no-go areas have been identified within the 400 kV powerline and substation study area. The ancient Koa River Palaeovalley area near Aggenys, largely buried beneath younger cover sands (Fig. 1), may feature important Tertiary fossils at depth but these are very unlikely to be directly impacted by the shallow excavations envisaged for the present electrical infrastructure project.
    [Show full text]