(12) United States Patent (10) Patent N0.: US 6,806,865 B2 Oueslati Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent N0.: US 6,806,865 B2 Oueslati Et Al US006806865B2 (12) United States Patent (10) Patent N0.: US 6,806,865 B2 Oueslati et al. (45) Date of Patent: 061. 19, 2004 (54) INTEGRATED J OYPAD FOR HANDHELD 2002/0103616 A1 * 8/2002 Park et al. ................ .. 702/150 COMPUTER 2002/0113771 A1 * 8/2002 Rosenberg et al. ....... .. 345/156 (75) Inventors: Hatem Oueslati, Palavas (FR); Renaud OTHER PUBLICATIONS Malaval, La Grande Motte (FR) ZDNet IT Resource Centers, Handspring adds color PDA, GameFace, 2 pps., printed from the Internet Web site Zdnet (73) Assignee: Palm, Inc., Santa Clara, CA (US) .com/enterprise/stories/main/O,10228,2640711,00.html on Jan. 22, 2001. ( * ) Notice: Subject to any disclaimer, the term of this Handspring: Entertainment, Accessories GameFace for patent is extended or adjusted under 35 VisorPrism, 1 pp., printed from the Internet Web site hand U.S.C. 154(b) by 527 days. spring.com/products/Productjhtml?PRODID= 625&CATID=624 on Jan. 22, 2001. (21) Appl. No.: 09/777,185 * cited by examiner (22) Filed: Feb. 5, 2001 (65) Prior Publication Data Primary Examiner—Bipin ShalWala Assistant Examiner—Ricardo Osorio US 2002/0105503 A1 Aug. 8, 2002 (74) Attorney, Agent, or Firm—Foley & Lardner LLP (51) Int. Cl.7 ................................................ .. G09G 5/08 (57) ABSTRACT (52) US. Cl. ........................ .. 345/161; 345/179; 463/38 A handheld computer is disclosed. The handheld computer (58) Field of Search ............................... .. 345/156—157, is con?gured With a housing, a display supported in the 345/160—161, 163—169, 173_175, 177, housing, and computing electronics supported in the housing 182, 179_1s0; 178/18.03—19.05; 361/680—681, and con?gured to communicate With the display. The hand 683, 686; 341/20, 22, 34; 463/37, 38; D14/333, held computer disclosed also includes an integrated input 341, 342, 402, 411, 412, 417 device con?gured to provide input to the handheld com (56) References Cited puter. The input device provides different input signals to the computing electronics dependent upon a directional move U.S. PATENT DOCUMENTS ment provided by a user. The input device is con?gured to communicate more than four distinct directional movements RE35,342 E * 10/1996 Louis et al. .............. .. 345/179 from a user to the computing electronics. 5,706,026 A * 1/1998 Kent et al. .. 345/156 5,751,229 A * 5/1998 Funahashi ...... .. 341/5 5,790,100 A * 8/1998 Kikinis 345/158 Further, the handheld computer disclosed may include a 6,043,807 A * 3/2000 Carroll . .. 345/163 joystick coupler Which is integrated into a joypad. The 6,163,326 A * 12/2000 Klein et al. .. 345/156 joypad coupler is con?gured to receive at least a portion of 6,392,634 B1 * 5/2002 Bowers et al. .. 345/163 the stylus Which is con?gured to act as a joystick. 6,563,487 B2 * 5/2003 Martin et al. .. 345/156 6,563,493 B2 * 5/2003 Kobayashi et al. ....... .. 345/179 6,606,083 B1 * 8/2003 Murray et al. ............ .. 345/158 13 Claims, 1 Drawing Sheet U.S. Patent 0a. 19, 2004 US 6,806,865 B2 FIG. 1 US 6,806,865 B2 1 2 INTEGRATED J OYPAD FOR HANDHELD grated into the housing. Further, the handheld computer COMPUTER includes a joystick coupler integrated into the joypad. The joypad coupler is con?gured to receive at least a portion of the stylus Which is con?gured to act as a joystick. FIELD OF THE INVENTION Further, an exemplary embodiment relates to a joystick The invention relates to input devices typically used in device for a handheld computer. The handheld computer is handheld computing devices. In particular, the invention con?gured to be used With a stylus. The joystick device relates to an integrated joypad for a handheld computer. The includes an input device integrated into the handheld com integrated joypad is con?gured With a receptacle for receiv puter. The joystick device also includes a coupler integrated ing a graspable portion, such as a section of the stylus used into the input device con?gured to couple at least a portion With the handheld computer. The graspable portion of the of the stylus to the input device. stylus connected to the joypad receptacle is con?gured to Further still, an exemplary embodiment relates to a form a joystick. method of assembling a joystick for a handheld computer. The method includes providing a handheld computer With a BACKGROUND OF THE INVENTION 15 joystick receptacle. The method also includes providing a stylus having a detachable portion. The method further 1, “ Handheld computing devices, “palmtops , palmhelds”, includes detaching a detachable portion from the stylus. personal digital assistants (PDAs), or handheld computers Further still, the method includes coupling the detachable typically Weigh less than a pound and ?t in a pocket. These portion to the receptacle. handhelds generally provide some combination of personal information management, database functions, Word BRIEF DESCRIPTION OF THE DRAWINGS processing, and spreadsheets. Because of the small siZe and The invention Will become more fully understood from portability of handhelds, strict adherence to hardWare the folloWing detailed description, taken in conjunction With constraints, such as input device hardWare, must be main the accompanying draWings, Wherein like reference numer tained. It is conventional to have buttons on the handheld 25 als refer to like elements, in Which: computer for providing user input to the handheld computer. FIG. 1 is an exemplary depiction of a handheld computer Further, the buttons may be con?gured to be used for the playing of game softWare and/or navigating through appli having an integrated joypad With a detachable joystick; cation softWare. FIG. 2 is an exemplary depiction of a stylus having a detachable tip; Other conventional implementations of input devices for handheld computers include attachable joystick devices that FIG. 3 is an exemplary depiction of a handheld computer may be attached onto the front face of the handheld com With an integrated joypad and having the detachable joystick puter. detached therefrom; Accordingly, there is a need for an integrated joypad for FIG. 4 is an exemplary front vieW of the input button array of the handheld computer With the joystick; a handheld computer. Further, there is a need for an inte 35 grated joypad for a handheld computer Which alloWs for the FIG. 5 is a cross sectional depiction of the joystick and attachability of a portion of a stylus to create a joystick joypad movement taken along line 5—5 of FIG. 4; and device. FIG. 6 is an exemplary diagram depicting discrete direc The teachings herein beloW extend to those embodiments tions Which a user may move the joystick. 40 Which fall Within the scope of the appended claims, regard DETAILED DESCRIPTION OF THE less of Whether they accomplish one or more of the above EXEMPLARY EMBODIMENTS mentioned needs. Referring to FIG. 1, a handheld computer 100 is depicted, SUMMARY OF THE INVENTION being optionally detachably coupled to an accessory device 45 110, according to an exemplary embodiment. Handheld An exemplary embodiment relates to a handheld com computer 100 may include Palm style computers manufac puter. The handheld computer includes a housing and a tured by Palm, Inc., of Santa Clara, Calif. Other exemplary display supported by the housing. The handheld computer embodiments of the invention may include WindoWs CETM also includes computing electronics supported by the hous handheld computers, or other handheld computers and per ing and con?gured to communicate With the display. The sonal digital assistants, as Well as cellular telephones, and handheld computer further includes an integrated input other mobile computing devices. Further, handheld com device con?gured to provide input to the handheld com puter 100 may be con?gured With or Without accessory puter. The input device provides different input signals to the device 110 or optionally With any of a variety of other computing electronics dependent on a directional movement accessory devices. As shoWn, accessory device 110 may be, provided by a user. The input device is con?gured to 55 but is not limited to, a desktop cradle used for synchroniZing communicate more than four distinct directional movements With a personal computer or other device. from a user to the computing electronics. Preferably, handheld computer 100 includes interactive Another exemplary embodiment relates to a handheld hardWare and softWare that performs functions such as computer. The handheld computer includes a housing, data maintaining calendars, phone lists, task lists, notepads, cal processing electronics disposed Within the housing, and a culation applications, spreadsheets, games, and other appli display disposed in the housing and coupled to the data cations capable of running on a computing device. Handheld processing electronics. The display includes a touch screen computer 100, shoWn in FIG. 1 includes a plurality of input con?gured to be used With a stylus. The handheld computer functions, keys 117 and a display 113 having graphical user also includes a joypad coupled to the data processing interface features. Display 113 may be provided With an electronics and con?gured to communicate signals to the 65 interface that alloWs a user to select and alter displayed data processing electronics dependent on the direction in content using a pointer, such as, but not limited to, a stylus Which the joypad is moved. The joypad is moveably inte 200, an example of Which is depicted in FIG. 2. US 6,806,865 B2 3 4 Referring again to FIG. 1, in an exemplary embodiment, stylus as Well as directional inputs from a plurality of buttons display 113 also includes a Graf?tiTM (or other handwriting such as buttons 117 (see FIG.
Recommended publications
  • Motion and Context Sensing Techniques for Pen Computing
    Motion and Context Sensing Techniques for Pen Computing Ken Hinckley1, Xiang ‘Anthony’ Chen1,2, and Hrvoje Benko1 * Microsoft Research, Redmond, WA, USA1 and Carnegie Mellon University Dept. of Computer Science2 ABSTRACT We explore techniques for a slender and untethered stylus prototype enhanced with a full suite of inertial sensors (three-axis accelerometer, gyroscope, and magnetometer). We present a taxonomy of enhanced stylus input techniques and consider a number of novel possibilities that combine motion sensors with pen stroke and touchscreen inputs on a pen + touch slate. These Fig. 1 Our wireless prototype has accelerometer, gyro, and inertial sensors enable motion-gesture inputs, as well sensing the magnetometer sensors in a ~19 cm Χ 11.5 mm diameter stylus. context of how the user is holding or using the stylus, even when Our system employs a custom pen augmented with inertial the pen is not in contact with the tablet screen. Our initial results sensors (accelerometer, gyro, and magnetometer, each a 3-axis suggest that sensor-enhanced stylus input offers a potentially rich sensor, for nine total sensing dimensions) as well as a low-power modality to augment interaction with slate computers. radio. Our stylus prototype also thus supports fully untethered Keywords: Stylus, motion sensing, sensors, pen+touch, pen input operation in a slender profile with no protrusions (Fig. 1). This allows us to explore numerous interactive possibilities that were Index Terms: H.5.2 Information Interfaces & Presentation: Input cumbersome in previous systems: our prototype supports direct input on tablet displays, allows pen tilting and other motions far 1 INTRODUCTION from the digitizer, and uses a thin, light, and wireless stylus.
    [Show full text]
  • 2019 Streamlight® Tactical Catalog
    CELEBRATING 45 YEARS SOLVING LIGHTING PROBLEMS. INTRODUCING NEW PRODUCTS. ® 90 IT’S WHAT WE DO. PROTAC Since 1973, Streamlight has delivered effective, efficient high-performance lighting solutions. The latest technology delivers unmatched performance, unheard of durability and incredible value. We’ve earned our reputation one customer at a time. And we’re not about to let up now. SIEGE ® X USB 2 GET MORE INFO AT: STREAMLIGHT.COM / 800-523 –7488 / 610-631-0600 TLR-8 ® G RAIL-MOUNTED LIGHT TLR-6 ® NON-LASER TLR-6 ® FOR SIG SAUER P365 PROTAC ® RAIL MOUNT HL-X LASER BANDIT ® PRO USB HEADLAMP TLR-VIR ® II SPECIALTY PRODUCT TL-RACKER ™ FOREND LIGHT 3 STREAMLIGHT TLRs THE WIDEST RANGE OF WEAPON-MOUNTED LIGHTS Streamlight produces a full line of weapon-mounted lights with the features that law enforcement, conceal & carry, and sportsmen need: high-lumen, laser, and IR. Models to fit long guns and full-size and compact pistols. LIGHT ONLY LIGHT ONLY COMPACT & FULL FRAME PISTOLS UNIVERSAL RAIL-MOUNT MODELS TLR-7® TLR-1 HL® TLR-1® TLR-3® WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR TLR-1®s WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR NEW SUB-COMPACT & COMPACT PISTOLS TRIGGER GUARD & TLR-6® NON-LASER TLR-7® TLR-3® RAIL-MOUNT MODELS WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR NEW LONG GUN / AR SHOTGUN FOREND & RAIL-MOUNT MODELS TLR-1 HL® PROTAC® RAIL MOUNT 1 PROTAC® T L R -1 HP L® TL-RACKER™ (Long Gun Kit) PROTAC® RAIL MOUNT 2 RAIL MOUNT HL-X (Long Gun Kit) WHITE LIGHT ILLUMINATOR/FOREND WHITE LIGHT ILLUMINATOR WHITE
    [Show full text]
  • KSPC (Keystrokes Per Character) As a Characteristic of Text Entry Techniques
    KSPC (Keystrokes per Character) as a Characteristic of Text Entry Techniques I. Scott MacKenzie Dept. of Computer Science York University Toronto, Ontario, Canada M3J 1P3 +1 416 736 2100 WQEGOIR^MI$EGQSVK Abstract. KSPC is the number of keystrokes, on average, to generate each character of text in a given language using a given text entry technique. We systematically describe the calculation of KSPC and provide examples across a variety of text entry techniques. Values for English range from about 10 for methods using only cursor keys and a SELECT key to about 0.5 for word prediction techniques. It is demonstrated that KSPC is useful for a priori analyses, thereby supporting the characterisation and comparison of text entry methods before labour-intensive implementations and evaluations. 1 Introduction An important research area in mobile computing is the development of efficient means of text entry. Interest is fueled by trends such as text messaging on mobile phones, two-way paging, and mobile web and email access. Coincident with this is the continued call in HCI for methods and models to make systems design tractable at the design and analysis stage [5]. This paper addresses these two themes. We propose a measure to characterise text entry techniques. It is calculated a priori, using a language model and a keystroke-level description of the technique. The measure is used to characterise and compare methods at the design stage, thus facilitating analyses prior to labour-intensive implementations and evaluations. 2 Keystrokes per Character (KSPC) KSPC is an acronym for keystrokes per character. It is the number of keystrokes required, on average, to generate a character of text for a given text entry technique in a given language.
    [Show full text]
  • Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces
    TECHNOLOGY AND CODE published: 04 June 2021 doi: 10.3389/frvir.2021.684498 Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces Florian Kern*, Peter Kullmann, Elisabeth Ganal, Kristof Korwisi, René Stingl, Florian Niebling and Marc Erich Latoschik Human-Computer Interaction (HCI) Group, Informatik, University of Würzburg, Würzburg, Germany This article introduces the Off-The-Shelf Stylus (OTSS), a framework for 2D interaction (in 3D) as well as for handwriting and sketching with digital pen, ink, and paper on physically aligned virtual surfaces in Virtual, Augmented, and Mixed Reality (VR, AR, MR: XR for short). OTSS supports self-made XR styluses based on consumer-grade six-degrees-of-freedom XR controllers and commercially available styluses. The framework provides separate modules for three basic but vital features: 1) The stylus module provides stylus construction and calibration features. 2) The surface module provides surface calibration and visual feedback features for virtual-physical 2D surface alignment using our so-called 3ViSuAl procedure, and Edited by: surface interaction features. 3) The evaluation suite provides a comprehensive test bed Daniel Zielasko, combining technical measurements for precision, accuracy, and latency with extensive University of Trier, Germany usability evaluations including handwriting and sketching tasks based on established Reviewed by: visuomotor, graphomotor, and handwriting research. The framework’s development is Wolfgang Stuerzlinger, Simon Fraser University, Canada accompanied by an extensive open source reference implementation targeting the Unity Thammathip Piumsomboon, game engine using an Oculus Rift S headset and Oculus Touch controllers. The University of Canterbury, New Zealand development compares three low-cost and low-tech options to equip controllers with a *Correspondence: tip and includes a web browser-based surface providing support for interacting, Florian Kern fl[email protected] handwriting, and sketching.
    [Show full text]
  • Chapter 9. Input Devices
    Table of contents 9 Input devices .................................................................................................................9-1 9.1 Keyboards ............................................................................................................. 9-4 9.2 Fixed-function keys .............................................................................................. 9-6 9.3 Pointing devices.................................................................................................... 9-7 9.3.1 General........................................................................................................... 9-7 9.3.2 Mouse ............................................................................................................ 9-9 9.3.3 Joystick and trackball .................................................................................. 9-10 9.3.3.1 General..................................................................................................9-10 9.3.3.2 Hand-operated displacement joysticks .................................................9-10 9.3.3.3 Finger-operated displacement joysticks................................................9-11 9.3.3.4 Thumb tip and fingertip-operated displacement joysticks....................9-13 9.3.3.5 Hand-operated isometric joysticks........................................................9-13 9.3.3.6 Thumb tip and fingertip-operated isometric joysticks..........................9-14 9.3.3.7 Ball controls..........................................................................................9-14
    [Show full text]
  • Virtual Reality Controllers
    Evaluation of Low Cost Controllers for Mobile Based Virtual Reality Headsets By Summer Lindsey Bachelor of Arts Psychology Florida Institute of Technology May 2015 A thesis Submitted to the College of Aeronautics at Florida Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science In Aviation Human Factors Melbourne, Florida April 2017 © Copyright 2017 Summer Lindsey All Rights Reserved The author grants permission to make single copies. _________________________________ The undersigned committee, having examined the attached thesis " Evaluation of Low Cost Controllers for Mobile Based Virtual Reality Headsets," by Summer Lindsey hereby indicates its unanimous approval. _________________________________ Deborah Carstens, Ph.D. Professor and Graduate Program Chair College of Aeronautics Major Advisor _________________________________ Meredith Carroll, Ph.D. Associate Professor College of Aeronautics Committee Member _________________________________ Neil Ganey, Ph.D. Human Factors Engineer Northrop Grumman Committee Member _________________________________ Christian Sonnenberg, Ph.D. Assistant Professor and Assistant Dean College of Business Committee Member _________________________________ Korhan Oyman, Ph.D. Dean and Professor College of Aeronautics Abstract Title: Evaluation of Low Cost Controllers for Mobile Based Virtual Reality Headsets Author: Summer Lindsey Major Advisor: Dr. Deborah Carstens Virtual Reality (VR) is no longer just for training purposes. The consumer VR market has become a large part of the VR world and is growing at a rapid pace. In spite of this growth, there is no standard controller for VR. This study evaluated three different controllers: a gamepad, the Leap Motion, and a touchpad as means of interacting with a virtual environment (VE). There were 23 participants that performed a matching task while wearing a Samsung Gear VR mobile based VR headset.
    [Show full text]
  • Displaying Images on the SMART Sympodium
    Displaying Images on the SMART Sympodium Anything you can display on your computer monitor will be projected onto the SMART Sympodium when you are connected to the system. For example, you could display: Word Documents Images Pages on the Internet PowerPoint Presentations Statistical or Design Programs Touching the SMART Sympodium screen with the pen stylus is equivalent to clicking on your computer screen using your mouse. Tap once on the Sympodium for a single mouse click; tap twice on the Sympodium for a double click. Drawing on the Sympodium Screen Use the stylus attached to the SMART Sympodium to draw on the screen. Do not write on the SMART Sympodium screen with dry-erase markers or pens. Note that the stylus pen color is changeable. It will write in the color you select by pen color selection buttons located at the top of the Sympodium screen. Also note that the pen and mouse are interchangeable. However if you lay the pen on the screen,the mouse will not function properly. Always rest the pen near the inside bottom of the screen when not in use. Note the buttons at the bottom of the Sympodium panel. These are shortcuts to some of the Sympodium tools. By default, the Floating Tools are not active. To activate them, click on the Start Menu and then "SMART Board Tools". The toolbar will fade in on the left side of the screen. To customize the appearance of your tools: Click on the "Gear" icon at the bottom of the Floating Toolbar. Drag the desired tool onto the bar; likewise, drag the undesired tool away.
    [Show full text]
  • LNCS 4551, Pp
    Stylus Enhancement to Enrich Interaction with Computers Yu Suzuki, Kazuo Misue, and Jiro Tanaka Department of Computer Science, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan {suzuki,misue,jiro}@iplab.cs.tsukuba.ac.jp Abstract. We introduce a technique to enrich user interaction with a computer through a stylus. This technique allows a stylus to be manipulated in the air to operate applications in new ways. To translate the stylus manipulation into application behavior, we take an approach that we attach an accelerometer to the stylus. Such a stylus allows control through new operations like rolling and shaking, as well as through conventional operations like tapping or making strokes. An application can use these operations to switch modes or change parameters. We have implemented a number of applications, called the “Oh! Stylus Series,” that can be used with our proposed technique. Keywords: Stylus Enhancement, Interaction, Accelerometer, Behavior. 1 Introduction Computer operations based on a stylus, compared to those with a mouse, have the advantage of being direct and easy to understand. In terms of the interaction style, though, most stylus operations simply replace mouse operations, so these operations do not take advantage of all the ways a pen-shaped device can be handled. Potential interface techniques have not been realized because computers cannot detect stylus positions and movements when a conventional stylus is not touching the display. Our goal is to make pen-based applications more useful by enabling a computer to detect such manipulations of a stylus and use them to govern applications run on the computer.
    [Show full text]
  • Neonatal Intubation Simulation with Virtual Reality and Haptic Feedback
    Neonatal Intubation Simulation with Virtual Reality and Haptic Feedback BME 400 University of Wisconsin Madison Department of Biomedical Engineering October 10th, 2018 Team Members: Team Leader: Carter Griest ​ Communicator: Isaac Hale ​ BSAC: Sara Martin ​ BPAG: Jessi Kelley ​ BWIG: Joey Campagna ​ Advisor: Beth Meyerand (Medical Imaging) ​ Clients: Dr. Ryan McAdams and Dr. Brandon Tomlin ​ Abstract Respiratory distress syndrome (RDS), a neonatal disease characterized by difficulty breathing, is remarkably common among premature infants, affecting up to 60% of the population. Patient outcomes resulting from RDS are undesirably poor. Neonatal intubation, the primary treatment for RDS, is an extremely difficult procedure to perform. Unsatisfactory patient outcomes are in part due to ineffective training methods, which include video instruction and intubation performed on mannequins. A more realistic training method that better replicates the procedure’s technical challenges and stressful nature would enhance physician competency, resulting in improved clinical outcomes. Virtual reality (VR) is an innovative tool becoming increasingly used in the medical field, particularly for simulations. VR provides a means by which individuals can be visually and acoustically immersed in a non-physical, yet responsive, environment. Via the incorporation of haptic feedback devices, virtual simulations can include somatosensory feedback, greatly increasing simulation realism. Cutting edge medical VR simulations with haptic feedback already exist and represent the future of medical training. Integration of a well-designed virtual environment with haptic devices that imitate a neonatal intubation procedure would provide a more effective means of training. Currently, the simulation includes a prototype operating room, and beginnings of a 3D replication of a neonate and upper respiratory anatomy.
    [Show full text]
  • Wii U Fun Center Operations Manual
    Wii U Fun Center Operations Manual 100425-E Note: Fun Centers have been rebranded as Starlight Gaming stations. Your device will still refer to “Fun Center.” Any in-person reference to “Gaming station” also refers to this product. 100425-E Do you need assistance? Visit www.starlight.org/gaming/support/contact for contact information For immediate assistance during the business hours of 6:00 AM to 4:00 PM PST Monday-Friday please call the Gaming station (Fun Center) Support Hotline at 1-877-716-8550 or email [email protected] FEDERAL COMMUNICATIONS COMMISSION (FCC) COMPLIANCE INFORMATION Note This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. Any changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Starlight Fun Center unit support: Phone: 877.716.8550 Website: starlight.nintendo.com Email: [email protected] © 2014-2015, 2016 Nintendo Manufactured by Nintendo of America Inc. Headquarters are in Redmond, Washington Starlight®, Fun Center®, and the boy reaching for the star logo are registered trademarks of Starlight Children’s Foundation®.
    [Show full text]
  • Chapter 3 Input Devices
    CSCA0201 FUNDAMENTALS OF COMPUTING Chapter 3 Input Devices 1 Input Devices Topics: • Input Devices • Examples of Input Device • Keyboard • Pointing Devices • Graphic and Video Input Devices • Audio Input Devices 2 Input Devices Input Devices • Any peripheral (piece of computer hardware equipment) used to provide data and control signals to a computer. • Allows the user to put data into the computer. • Without any input devices, a computer would only be a display device and not allow users to interact with it. 3 Input Devices Examples of Input Device • Keyboard • Mouse • Touchscreen • Graphic tablet • Microphone • Scanner 4 Input Devices Keyboard • One of the primary input devices used with a computer. • The keyboard looks very similar to the keyboards of electric typewriters, with some additional keys. • Keyboards allow a computer user to input letters, numbers, and other symbols into a computer • Uses an arrangement of buttons or keys. • Requires pressing and holding several keys simultaneously or in sequence. 5 Input Devices Keyboard 6 Input Devices Types of Keyboard • Standard • Laptop • Gaming and Multimedia • Thumb-sized • Virtual • Foldable 7 Input Devices Types of Keyboard Standard • Desktop computer keyboards, such as the 101-key US traditional keyboards or the 104-key Windows keyboards, include alphabetic characters, punctuation symbols, numbers and a variety of function keys. 8 Input Devices Types of Keyboard Laptop Keyboard • The laptop computer keyboard is a small version of the typical QWERTY keyboard. • A typical laptop has the same keyboard type as a normal keyboard, except for the fact that most laptop keyboards condense the symbols into fewer buttons to accommodate less space.
    [Show full text]
  • Music Games Rock: Rhythm Gaming's Greatest Hits of All Time
    “Cementing gaming’s role in music’s evolution, Steinberg has done pop culture a laudable service.” – Nick Catucci, Rolling Stone RHYTHM GAMING’S GREATEST HITS OF ALL TIME By SCOTT STEINBERG Author of Get Rich Playing Games Feat. Martin Mathers and Nadia Oxford Foreword By ALEX RIGOPULOS Co-Creator, Guitar Hero and Rock Band Praise for Music Games Rock “Hits all the right notes—and some you don’t expect. A great account of the music game story so far!” – Mike Snider, Entertainment Reporter, USA Today “An exhaustive compendia. Chocked full of fascinating detail...” – Alex Pham, Technology Reporter, Los Angeles Times “It’ll make you want to celebrate by trashing a gaming unit the way Pete Townshend destroys a guitar.” –Jason Pettigrew, Editor-in-Chief, ALTERNATIVE PRESS “I’ve never seen such a well-collected reference... it serves an important role in letting readers consider all sides of the music and rhythm game debate.” –Masaya Matsuura, Creator, PaRappa the Rapper “A must read for the game-obsessed...” –Jermaine Hall, Editor-in-Chief, VIBE MUSIC GAMES ROCK RHYTHM GAMING’S GREATEST HITS OF ALL TIME SCOTT STEINBERG DEDICATION MUSIC GAMES ROCK: RHYTHM GAMING’S GREATEST HITS OF ALL TIME All Rights Reserved © 2011 by Scott Steinberg “Behind the Music: The Making of Sex ‘N Drugs ‘N Rock ‘N Roll” © 2009 Jon Hare No part of this book may be reproduced or transmitted in any form or by any means – graphic, electronic or mechanical – including photocopying, recording, taping or by any information storage retrieval system, without the written permission of the publisher.
    [Show full text]