Watch Over Antarctic Waters

Total Page:16

File Type:pdf, Size:1020Kb

Watch Over Antarctic Waters COMMENT PANDEMICS Invest in screening CONSERVATION Krill, orca and PHYSICS Has the pursuit of OBITUARY Stanley Falkow, people for infections, not whales: three tales of ocean beauty led modern physics microbe-mechanism animals for viruses p.180 plunder p.184 into a morass? p.186 hunter, remembered p.190 /GETTY NATIONAL GEOGRAPHIC NATIONAL PAUL SUTHERLAND/ PAUL Wandering albatrosses follow a vessel as it fishes for toothfish. Watch over Antarctic waters In a rapidly changing climate, fisheries in the Southern Ocean must be managed cautiously in response to data, warn Cassandra Brooks and colleagues. ntartica is a “natural reserve, devoted are strict, precautionary and science-based. currents and weather patterns are changing3. to peace and science”, according to Nations that are signatories must avoid The northwest coast of the Antarctic Pen- the Antarctic Treaty System. This significant or irreversible damage to fish and insula is one of the fastest-warming places Acomplex set of agreements collectively takes other animals that depend on them. on Earth — summer mean temperatures a firm stance on conservation, exemplified But the convention is failing to protect the are on average 3 °C higher than they were in by the Convention on the Conservation of Southern Ocean from overfishing and the 1950. Diminishing sea ice also means fewer Marine Living Resources. Adopted in 1980, impacts of climate change. algae, krill and Antarctic silverfish (Pleura- this convention was negotiated rapidly in Up to 20 nations fish in these icy waters1. gramma antarctica). Cumulative impacts of response to expanding trawling of Antarc- Antarctic krill and Patagonian and Antarctic historical and current fishing combined with tic krill (Euphausia superba). Krill are at the toothfish (Dissostichus eleginoides and environmental change have been linked to base of the region’s marine food web, so there Dissostichus mawsoni) are the main quarry. declines in populations of Chinstrap4 and were worries that a dearth of the small crus- More vessels and more-efficient fishing Gentoo penguins5 (Pygoscelis antarctica and taceans would threaten the whole ecosystem, technologies are now able to catch more ani- Pygoscelis papua). especially whales. mals (see ‘Antarctic fisheries’). Vessels using Because of the convention’s strict The aim of the convention is to conserve vacuum pumps can suck up 800 tonnes of provisions, its 25-member implementing all biota and ecosystems in the Southern krill in one day2. The vessels compete with body — the Commission for the Conserva- Ocean. Although fishing is allowed, it is not birds and mammals for food, especially in tion of Antarctic Marine Living Resources a right and does not trump responsibility for the most accessible waters. (CCAMLR) — is widely seen as a leader conservation. The convention’s provisions At the same time, ocean temperatures, in high-seas fisheries management. ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts r14ese rJUNEved. 2018 | VOL 558 | NATURE | 177 COMMENT But some fishing states are now trying to weaken the convention’s rules. China, An emperor penguin CCAMLR’s newest member (as of 2007), and an ice-breaker in argues that the convention enshrines the Ross Sea. nations’ rights to fish, rather than a respon- sibility to conserve6. China has also insisted that no-fishing zones are contrary to the convention, even though they are expressly included. And it has proposed that scientific evidence of a threat is required before an area is closed to fishing. Some other fishing nations, such as Russia, support this view7. Because CCAMLR operates by consen- sus, any state can block a measure that it perceives is not in its interests. For instance, in 2011, South Korea prevented the black- listing of one of its vessels that was caught fishing illegally8. If fishing carries on at its current pace amid rapid climate change, prime Antarctic fisheries and marine ecosystems could col- lapse, as has happened elsewhere9. For exam- ple, in the 1990s, after politicians failed to act on scientists’ warnings, the abundance of Atlantic cod (Gadus morhua) declined to less than 1% of historical levels9. We urge CCAMLR to better protect fisheries in the Southern Ocean. The impacts of climate change on populations now and in the future should be factored into decision- making, to avoid crashes in populations. CCAMLR may need to reduce or stop fish- Southern Ocean (see ‘Antarctic fisheries’). to increase its toothfish catch and send its ing in threatened areas or where there is high Owing to high prices, this is lucrative. Exploi- fleets into unfished areas such as the Weddell uncertainty about adverse effects. Marine tation rocketed in the 1990s, when toothfish, Sea5. Ukraine wants to capture more krill5. reserves must be well designed, and more of rebranded as Chilean sea bass, became popu- New Zealand and Australia, among others, JOHN B. WELLER them must be implemented. lar in top restaurants. Illegal, unreported and have extended their reach into toothfish CCAMLR should also do more to sup- unregulated fishing soared and ravaged popu- areas1. Other nations, including Namibia port basic research that is independent of lations; illegal fishers took six times more fish and Uruguay, signed the convention to gain the fishing enterprise. Such studies will lead than did legal vessels11. CCAMLR turned this fishing and market access1. to greater understanding of the dynamics of situation around by documenting catches, targeted species and their vulnerabilities to monitoring vessels and black-listing those KNOWLEDGE GAPS environmental change and overfishing. that did not comply. Illegal catches fell from Climate change compounds the problem. 33,000 tonnes in 1996 to less than 2,000 tonnes But environmental effects are difficult to FISHING PRESSURE by 2007 (ref. 11). Nonetheless, many Patagon- disentangle from the consequences of fish- Antarctic waters have long been plundered ian toothfish populations crashed, and remain ing. For example, scientists do not know (see also page 184). Species driven almost to depleted, notably whether toothfish fishing or encroaching ice extinction include elephant seals (Mirounga those around the “Some scenarios is behind the changing prevalence of killer leonina), blue whales (Balaenoptera muscu- Prince Edward may require whales in the southern Ross Sea12. lus), king penguins (Aptenodytes patagonica) Islands, BANZARE reduced More data would help. But research in the and marbled rockcod (Notothenia rossii)10. Bank and Kerguelen catches, or Southern Ocean is difficult and expensive. Some have bounced back; others haven’t, Plateau. allocations that Much of what is known about toothfish is such as the rockcod. Even so, remoteness The life cycles are restricted, gathered by the fishing industry, which does and harsh conditions have protected animals of toothfish make temporally or not collect environmental data. There are in the seas around Antarctica, in comparison them particularly spatially.” many gaps. We have much to learn about with those elsewhere. vulnerable, as well the life histories and population dynamics In the Southern Ocean, more krill are as difficult to study. They mature late, grow of the species being caught and how environ- caught than any other species (by weight). slowly and can live for 50 years. No one mental changes affect their birth and death About 300,000 tonnes are caught annually. knows how many there are in the Ross Sea, rates. There are few quantitative studies of They are mainly destined for omega-fatty- the main international fishery for tooth- connections among targeted organisms in acid supplements and fishmeal. Most krill fish. Nor does anyone know when, where the food web. are caught off the Antarctic Peninsula. The or how often they spawn9. They are the top The long-term ecological research (LTER) industry says that such catches are small, fish predator in the Southern Ocean, and programme, based at Palmer Station on the compared with the more than 300 million they are also key prey of Weddell seals (Lep- west of the Antarctic Peninsula, is unparal- tonnes of krill estimated to reside in circum- tonychotes weddellii) and killer whales (Orci- lelled in its multi-faceted approach. It gathers polar waters2. nus orca), and compete for smaller fish with information, for example, on how fluctuat- Patagonian and Antarctic toothfish each Adélie penguins (Pygoscelis adeliae). ing sea ice influences krill and other small support relatively small fisheries in the Fishing states want more. Russia is trying organisms. CCAMLR also has an ecosystem 178 | NATURE | VOL 558 | 14 JUNE© 20182018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. COMMENT South Atlantic CCAMLR Ocean Managed area Prince Edward Islands Sub-divisions South Georgia Marine protected areas NUMBER OF VESSELS South Sandwich Islands REQUESTING TO FISH 16–20 11–15 Krill shoals are 5–10 especially rich near the coasts of the <5 Weddell Western Antarctic Sea Peninsula, which is one of the fastest- Kerguelen warming regions Islands on Earth. TOTAL ALLOWED ANTARCTICA CATCH (TONNES) Davis Sea Krill 2.6m Ross 1,000 km Sea 440k 279k 155k Fishing pressure is 93k South Pacic increasing in the Ross Ocean Sea (for toothsh) and o the Antarctic Toothsh Peninsula (for krill). 5k monitoring programme designed to study ANTARCTIC FISHERIES 2.6k–3.5k krill-fishing impacts on land-breeding marine Krill and toothsh received the largest catch allowances in the Southern Ocean in 545–1.3k predators. However, these data are not effec- 2017–18. They are increasingly exploited in spite of tight management by the tively incorporated into decision-making. Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). 38–63 CCAMLR acknowledges that it must account for the impacts of global warming are making the area more accessible. In 2017, fishing can continue and still meet the SOURCE: WWW.CCAMLR.ORG in its policies.
Recommended publications
  • The Kerguelen Plateau: Marine Ecosystem + Fisheries
    THE KERGUELEN PLATEAU: MARINE ECOSYSTEM + FISHERIES Proceedings of the Second Symposium Kerguelen plateau Marine Ecosystems & Fisheries • SYMPOSIUM 2017 heardisland.antarctica.gov.au/research/kerguelen-plateau-symposium Important readjustments in the biomass and distribution of groundfish species in the northern part of the Kerguelen Plateau and Skiff Bank Guy Duhamel1, Clara Péron1, Romain Sinègre1, Charlotte Chazeau1, Nicolas Gasco1, Mélyne Hautecœur1, Alexis Martin1, Isabelle Durand2 and Romain Causse1 1 Muséum national d’Histoire naturelle, Département Adaptations du vivant, UMR 7208 BOREA (MNHN, CNRS, IRD, Sorbonne Université, UCB, UA), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France 2 Muséum national d’Histoire naturelle, Département Origines et Evolution, UMR 7159 LOCEAN (Sorbonne Université, IRD, CNRS, MNHN), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France Corresponding author: [email protected] Abstract The recent changes in the conservation status (establishment and extension of a marine reserve) and the long history of fishing in the Kerguelen Islands exclusive economic zone (EEZ) (Indian sector of the Southern Ocean) justified undertaking a fish biomass evaluation. This study analysed four groundfish biomass surveys (POKER 1–4) conducted from 2006 to 2017 across depths ranging from 100 to 1 000 m. Forty demersal species were recorded in total and density distributions of twenty presented. However, only seven species account for the majority of the biomass (96%). Total biomass was 250 000 tonnes during the first three surveys (POKER 1–3), and 400 000 tonnes for POKER 4 due to a high catch of marbled notothen (Notothenia rossii) and mackerel icefish (Champsocephalus gunnari) (accounting for 44% and 17% of the 400 000 tonnes biomass respectively).
    [Show full text]
  • Issue Statement the Antarctic the Antarctic Continent and Surrounding Southern Ocean Support Unique Terrestrial Ecosystems and S
    Issue Statement The Antarctic The Antarctic continent and surrounding Southern Ocean support unique terrestrial ecosystems and some of the world's most biologically productive neritic and pelagic food webs. At the base of the pelagic food web are Antarctic krill (Euphausia superba), a planktonic crustacean, with an estimated productivity of several billion tons annually. Krill, either directly or indirectly, provide food for most whales, seals, fish, squid, and seabirds that breed in or migrate to the Southern Ocean each year. Small-scale krill fisheries were first established in the 1960s, with several more initiated in the 1980s. Catches since 2010 averaged around 200,000 tons annually, in response to worldwide demand for more protein coupled with advances in technology, prompting concerns about the sustainability of these fisheries, especially considering climate change. In the neritic system, toothfish (Dissostichus spp.) (a key prey species of seals and Orcas) and minke whales (Balaenoptera bonaerensis) are currently the subjects of exploitation. In 1986, the International Whaling Commission placed a moratorium on commercial minke whaling, although the mammals may be killed for research purposes. From 1986 until 2018, Japan continued to harvest minke whales under this exception, with annual catches >500 between 1997 and 2008. In late 2018, Japan announced its intention to withdraw from the International Whaling Commission and resume commercial whaling. Fisheries for the Antarctic toothfish (Dissostichus mawsoni) (also called Antarctic cod) and Patagonian toothfish (Dissostichus eleginoides) (also called Chilean Seabass) are regulated by the Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR). Both are currently harvested, but there are concerns that the illegal catch far outweighs that permitted by the CCAMLR and could jeopardize sustainability of both species.
    [Show full text]
  • Data Structure
    Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • MARINE FISHERIES Fishing in the Ice: Is It Sustainable?
    NIWA Water & Atmosphere 11(3) 2003 MARINE FISHERIES Fishing in the ice: is it sustainable? Stuart Hanchet In recent years an exploratory fishery for The Ross Sea fishery is the southernmost fishery Antarctic toothfish has developed in in the world, and ice conditions and extreme Peter Horn the Ross Sea and in the Southern Ocean to cold make fishing both difficult and dangerous. Michael Stevenson the north. Fisheries in Antarctic waters are During most of the year the Ross Sea is covered managed by CCAMLR (Commission for by ice. However, during January and February the Conservation of Antarctic Marine Living areas of open water (called polynas) form, Resources). CCAMLR takes a precautionary which enable access to the continental shelf and approach to fisheries management and also slope. Longline vessels from New Zealand, has a strong mandate from its members to take South Africa and Russia start working in the A better into account ecosystem effects of fishing. In deep south at this time, but as sea ice forms knowledge of the conjunction with the Ministry of Fisheries they move north and by May are restricted to biology and habits (MFish) and New Zealand fishing companies, the northernmost fishing grounds. Antarctic NIWA has been involved in developing research toothfish has formed over 95% of the fishery’s of the Antarctic programmes to help ensure that the fishery is catch, which has steadily increased from about toothfish is needed both sustainable and has minimal impact on the 40 t in 1998 to over 1800 t in 2003. surrounding ecosystem. to manage a NIWA’s research related to the toothfish in the Ross Sea has concentrated on catch sampling sustainable fishery methods, genetics, age and growth, Antarctic toothfish get for this species in very big.
    [Show full text]
  • A GUIDE to IDENTIFICATION of FISHES CAUGHT ALONG with the ANTARCTIC KRILL Author(S) 1) Iwami, T
    Document No. [ to be completed by the Secretariat ] WG-EMM-07/32 Date submitted [ to be completed by the Secretariat ] 1 July 2007 Language [ to be completed by the Secretariat ] Original: English Agenda Agenda Item No(s): 4.3 Title A GUIDE TO IDENTIFICATION OF FISHES CAUGHT ALONG WITH THE ANTARCTIC KRILL Author(s) 1) Iwami, T. and 2) M. Naganobu Affiliation(s) 1) Laboratory of Biology, Tokyo Kasei Gakuin University 2) National Research Institute of Far Seas Fisheries Published or accepted for publication elsewhere? Yes No x If published, give details ABSTRACT A field key to early life stages of Antarctic fish caught along with the Antarctic krill is produced. The key includes 8 families and 28 species mainly from the Atlantic sector of the Southern Ocean and uses distinguished characters which permit rapid field identification. In some cases, however, it is impossible to discriminate among species of the same family by remarkable characters. A species key is not shown for such resemble species and a brief summary of the main morphological features of species and genera is provided. SUMMARY OF FINDINGS AS RELATED TO NOMINATED AGENDA ITEMS Agenda Item Finding 4.3 We are producing a practical field key to juvenile fish caught along with the Antarctic Scientific krill. To our knowledge more than 40 species of fish have been found as by-catch. Observation However, the number of dominant fish species found in the krill catch never exceeds 20 species. An useful and practical identification key to these dominant species maybe facilitate the quantitative assessment of fish in the krill catch.
    [Show full text]
  • Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries
    JANUARY 2020 Wholesale Market Profiles for Alaska Groundfish and FisheriesCrab Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries JANUARY 2020 JANUARY Prepared by: McDowell Group Authors and Contributions: From NOAA-NMFS’ Alaska Fisheries Science Center: Ben Fissel (PI, project oversight, project design, and editor), Brian Garber-Yonts (editor). From McDowell Group, Inc.: Jim Calvin (project oversight and editor), Dan Lesh (lead author/ analyst), Garrett Evridge (author/analyst) , Joe Jacobson (author/analyst), Paul Strickler (author/analyst). From Pacific States Marine Fisheries Commission: Bob Ryznar (project oversight and sub-contractor management), Jean Lee (data compilation and analysis) This report was produced and funded by the NOAA-NMFS’ Alaska Fisheries Science Center. Funding was awarded through a competitive contract to the Pacific States Marine Fisheries Commission and McDowell Group, Inc. The analysis was conducted during the winter of 2018 and spring of 2019, based primarily on 2017 harvest and market data. A final review by staff from NOAA-NMFS’ Alaska Fisheries Science Center was completed in June 2019 and the document was finalized in March 2016. Data throughout the report was compiled in November 2018. Revisions to source data after this time may not be reflect in this report. Typically, revisions to economic fisheries data are not substantial and data presented here accurately reflects the trends in the analyzed markets. For data sourced from NMFS and AKFIN the reader should refer to the Economic Status Report of the Groundfish Fisheries Off Alaska, 2017 (https://www.fisheries.noaa.gov/resource/data/2017-economic-status-groundfish-fisheries-alaska) and Economic Status Report of the BSAI King and Tanner Crab Fisheries Off Alaska, 2018 (https://www.fisheries.noaa.
    [Show full text]
  • Good Whale Hunting Robert L
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the .SU . U.S. Department of Commerce Department of Commerce 2003 Good Whale Hunting Robert L. Pitman National Marine Fisheries Service Follow this and additional works at: http://digitalcommons.unl.edu/usdeptcommercepub Pitman, Robert L., "Good Whale Hunting" (2003). Publications, Agencies and Staff of ht e U.S. Department of Commerce. 509. http://digitalcommons.unl.edu/usdeptcommercepub/509 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the .SU . Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NATURALIST AT LARGE Good Whale Hunting Two tantalizing Russian reports take the author on a quest to the Antarctic, in search of two previously unrecognized kinds of killer whale. By Robert L. Pitman hey always remind me of witch’s hats—a little bit of THalloween in the winter wonderland. Looking across a flat plain of frozen Antarctic sea ice, I watch as a herd of killer whales swims along a lead—a long, narrow crack in the six- foot-thick ice. The fins of the males are black isosceles triangles, five feet tall, and they look like a band of trick- or-treaters coming our way. I am on board the U.S. Coast Guard icebreaker Polar Star as it back-and-rams the frozen ocean to open up a fourteen- mile-long channel into McMurdo Sta- tion, fifty feet at a whack.
    [Show full text]
  • Seabirds of Human Settlements in Antarctica: a Case Study of the Mirny Station
    CZECH POLAR REPORTS 11 (1): 98-113, 2021 Seabirds of human settlements in Antarctica: A case study of the Mirny Station Sergey Golubev Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Nekouzskii raion, Yaroslavl oblast, 152742, Russia Abstract Antarctica is free of urbanisation, however, 40 year-round and 32 seasonal Antarctic stations operate there. The effects of such human settlements on Antarctic wildlife are insufficiently studied. The main aim of this study was to determine the organization of the bird population of the Mirny Station. The birds were observed on the coast of the Davis Sea in the Mirny (East Antarctica) from January 8, 2012 to January 7, 2013 and from January 9, 2015 to January 9, 2016. The observations were carried out mainly on the Radio and Komsomolsky nunataks (an area of about 0.5 km²). The duration of observations varied from 1 to 8 hours per day. From 1956 to 2016, 13 non-breeding bird species (orders Sphenisciformes, Procellariiformes, Charadriiformes) were recorded in the Mirny. The South polar skuas (Catharacta maccormicki) and Adélie penguins (Pygoscelis adeliae) form the basis of the bird population. South polar skuas are most frequently recorded at the station. Less common are Brown skuas (Catharacta antarctica lonnbergi) and Adélie penguins. Adélie penguins, Wilson's storm petrels (Oceanites oceanicus), South polar and Brown skuas are seasonal residents, the other species are visitors. Adélie penguins, Emperor (Aptenodytes forsteri), Macaroni (Eudyptes chrysolophus) and Chinstrap penguins (Pygoscelis antarctica), Wilson's storm petrels, South polar and Brown skuas interacted with the station environment, using it for com- fortable behavior, feeding, molting, shelter from bad weather conditions, and possible breeding.
    [Show full text]
  • Haswell Island (Haswell Island and Adjacent Emperor Penguin Rookery on Fast Ice)
    Measure 5 (2016) Management Plan for Antarctic Specially Protected Area No. 127 Haswell Island (Haswell Island and Adjacent Emperor Penguin Rookery on Fast Ice) 1. Description of values to be protected The area includes Haswell Island with its littoral zone and adjacent fast ice when present. Haswell Island was discovered in 1912 by the Australian Antarctic Expedition led by D. Mawson. It was named after William Haswell, professor of biology who rendered assistance to the expedition. Haswell is the biggest island of the same-name archipelago, with a height of 93 meters and 0,82 sq.meters in area. The island is at 2,5 km distance from the Russian Mirny Station operational from 1956. At East and South-East of the island, there is a large colony of Emperor penguins (Aptenodytes forsteri) on fast ice. The Haswell Island is a unique breeding site for almost all breeding bird species in East Antarctica including the: Antarctic petrel (Talassoica antarctica), Antarctic fulmar (Fulmarus glacioloides), Cape petrel (Daption capense), Snow petrel (Pagodroma nivea), Wilson’s storm petrel (Oceanites oceanicus), South polar skua (Catharacta maccormicki), Lonnberg skua Catharacta antarctica lonnbergi and Adelie penguin (Pygoscelis adeliae). The Area supports five species of pinnipeds, including the Ross seal (Ommatophoca rossii) which falls in the protected species category. ATCM VIII (Oslo, 1975) approved its designation as SSSI 7 on the aforementioned grounds after a proposal by the USSR. Map 1 shows the location of the Haswell Islands (except Vkhodnoy Island), Mirny Station, and logistic activity sites. It was renamed and renumbered as ASPA No. 127 by Decision 1 (2002).
    [Show full text]
  • Energetics of the Antarctic Silverfish, Pleuragramma Antarctica, from the Western Antarctic Peninsula
    Chapter 8 Energetics of the Antarctic Silverfish, Pleuragramma antarctica, from the Western Antarctic Peninsula Eloy Martinez and Joseph J. Torres Abstract The nototheniid Pleuragramma antarctica, commonly known as the Antarctic silverfish, dominates the pelagic fish biomass in most regions of coastal Antarctica. In this chapter, we provide shipboard oxygen consumption and nitrogen excretion rates obtained from P. antarctica collected along the Western Antarctic Peninsula and, combining those data with results from previous studies, develop an age-dependent energy budget for the species. Routine oxygen consumption of P. antarctica fell in the midrange of values for notothenioids, with a mean of 0.057 ± −1 −1 0.012 ml O2 g h (χ ± 95% CI). P. antarctica showed a mean ammonia-nitrogen excretion rate of 0.194 ± 0.042 μmol NH4-N g−1 h−1 (χ ± 95% CI). Based on current data, ingestion rates estimated in previous studies were sufficient to cover the meta- bolic requirements over the year classes 0–10. Metabolism stood out as the highest energy cost to the fish over the age intervals considered, initially commanding 89%, gradually declining to 67% of the annual energy costs as the fish aged from 0 to 10 years. Overall, the budget presented in the chapter shows good agreement between ingested and combusted energy, and supports the contention of a low-energy life- style for P. antarctica, but it also resembles that of other pelagic species in the high percentage of assimilated energy devoted to metabolism. It differs from more tem- perate coastal pelagic fishes in its large investment in reproduction and its pattern of slow steady growth throughout a relatively long lifespan.
    [Show full text]
  • Kapitan Khlebnikov
    kapitan khlebnikov Expeditions that Mark the End of an Era 1991-2012 01 End of an Era 22 Circumnavigation of the Arctic 03 End of an Era at a Glance 24 Northeast Passage: Siberia and the Russian Arctic 04 Kapitan Khlebnikov 26 Greenland Semi-circunavigation: Special Guests 06 The Final Frontier 10 Northwest Passage: Arctic Passage: West to East 28 Amundsen’s Route to Asia 12 Tanquary Fjord: Western Ross Sea Centennial Voyage: Ellesmere Island 30 Farewell to the Emperors 14 Ellesmere Island and of Antarctica Greenland: The High Arctic 32 Antarctica’s Far East – 16 Emperor Penguins: The Farewell Voyage: Saluting Snow Hill Island Safari the 100th Anniversary of the Australasia Antarctic Expedition. 18 The Weddell Sea and South Georgia: Celebrating the 34 Dates and Rates Heroes of Endurance 35 Inclusions 20 Epic Antarctica via the Terms and Conditions of Sale Phantom Coast and 36 the Ross Sea Only 112 people will participate in any one of these historic voyages. end of an era Join us as we mark the End of an Era with special guests and remarkable itineraries. The legendary icebreaker Kapitan Khlebnikov will retire transited the Northwest Passage more than any other as an expedition vessel in March 2012, returning to expedition ship. Adventurers aboard Khlebnikov were the duty as an escort ship in the Russian Arctic. As Quark’s first commercial travelers to witness a total eclipse of the flagship, the vessel has garnered more polar firsts than sun from the isolation of the Davis Sea in Antarctica. In any other passenger ship. Under the command of Captain 2004, the special attributes of Kapitan Khlebnikov made it Petr Golikov, Khlebnikov circumnavigated the Antarctic possible to visit an Emperor Penguin rookery in the Weddell continent, twice.
    [Show full text]