Identification of MW Polyomavirus, a Novel Polyomavirus in Human Stool
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tätigkeitsbericht 2007/2008
Tätigkeitsbericht 2007/2008 8 200 / 7 0 20 Tätigkeitsbericht Stiftung bürgerlichen Rechts Martinistraße 52 · 20251 Hamburg Tel.: +49 (0) 40 480 51-0 · Fax: +49 (0) 40 480 51-103 [email protected] · www.hpi-hamburg.de Impressum Verantwortlich Prof. Dr. Thomas Dobner für den Inhalt Dr. Heinrich Hohenberg Redaktion Dr. Angela Homfeld Dr. Nicole Nolting Grafik & Layout AlsterWerk MedienService GmbH Hamburg Druck Hartung Druck + Medien GmbH Hamburg Titelbild Neu gestaltete Fassade des Seuchenlaborgebäudes Tätigkeitsbericht 2007/2008 Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg Martinistraße 52 · 20251 Hamburg Postfach 201652 · 20206 Hamburg Telefon: +49-40/4 80 51-0 Telefax: +49-40/4 80 51-103 E-Mail: [email protected] Internet: www.hpi-hamburg.de Das Heinrich-Pette-Institut ist Mitglied der Leibniz-Gemeinschaft (WGL) Internet: www.wgl.de Inhaltsverzeichnis Allgemeiner Überblick Vorwort ................................................................................................... 1 Die Struktur des Heinrich-Pette-Instituts .............................................. 2 Modernisierung des HPI erfolgreich abgeschlossen ............................ 4 60 Jahre HPI .............................................................................................. 5 Offen für den Dialog .............................................................................. 6 Preisverleihungen und Ehrungen .......................................................... 8 Personelle Veränderungen in -
Vaccination with Prion Peptide-Displaying Polyomavirus-Like Particles Prolongs Incubation Time in Scrapie-Infected Mice
viruses Article Vaccination with Prion Peptide-Displaying Polyomavirus-Like Particles Prolongs Incubation Time in Scrapie-Infected Mice Martin Eiden 1,* , Alma Gedvilaite 2 , Fabienne Leidel 1,3, Rainer G. Ulrich 1 and Martin H. Groschup 1 1 Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; [email protected] (F.L.); rainer.ulrich@fli.de (R.G.U.); martin.groschup@fli.de (M.H.G.) 2 Life Sciences Center, Institute of Biotechnology, Vilnius University, Sauletekio˙ al. 7, LT-10257 Vilnius, Lithuania; [email protected] 3 Task Force Animal Diseases, Darmstadt Regional Administrative Council, Luisenplatz 2, 64283 Darmstadt, Germany * Correspondence: martin.eiden@fli.de Abstract: Prion diseases like scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt–Jakob disease (CJD) in humans are fatal neurodegenerative diseases characterized by the conformational conversion of the normal, mainly α-helical cellular prion protein (PrPC) into the abnormal β-sheet rich infectious isoform PrPSc. Various therapeutic or prophylactic approaches have been conducted, but no approved therapeutic treatment is available so far. Immunisation against prions is hampered by the self-tolerance to PrPC in mammalian species. One strategy to avoid this tolerance is presenting PrP variants in virus-like particles (VLPs). Therefore, we vaccinated C57/BL6 mice with nine prion peptide variants presented by hamster polyomavirus capsid protein VP1/VP2-derived VLPs. Mice were subsequently challenged intraperitoneally with the murine RML Citation: Eiden, M.; Gedvilaite, A.; prion strain. Importantly, one group exhibited significantly increased mean survival time of 240 days Leidel, F.; Ulrich, R.G.; Groschup, M.H. -
Newly Discovered KI, WU, and Merkel Cell Polyomaviruses
Sadeghi et al. Virology Journal 2010, 7:251 http://www.virologyj.com/content/7/1/251 RESEARCH Open Access Newly discovered KI, WU, and Merkel cell polyomaviruses: No evidence of mother-to-fetus transmission Mohammadreza Sadeghi1, Anita Riipinen2, Elina Väisänen1, Tingting Chen1, Kalle Kantola1, Heljä-Marja Surcel3, Riitta Karikoski4, Helena Taskinen2,5, Maria Söderlund-Venermo1, Klaus Hedman1,6* Abstract Background: Three* human polyomaviruses have been discovered recently, KIPyV, WUPyV and MCPyV. These viruses appear to circulate ubiquitously; however, their clinical significance beyond Merkel cell carcinoma is almost completely unknown. In particular, nothing is known about their preponderance in vertical transmission. The aim of this study was to investigate the frequency of fetal infections by these viruses. We sought the three by PCR, and MCPyV also by real-time quantitative PCR (qPCR), from 535 fetal autopsy samples (heart, liver, placenta) from intrauterine fetal deaths (IUFDs) (N = 169), miscarriages (120) or induced abortions (246). We also measured the MCPyV IgG antibodies in the corresponding maternal sera (N = 462) mostly from the first trimester. Results: No sample showed KIPyV or WUPyV DNA. Interestingly, one placenta was reproducibly PCR positive for MCPyV. Among the 462 corresponding pregnant women, 212 (45.9%) were MCPyV IgG seropositive. Conclusions: Our data suggest that none of the three emerging polyomaviruses often cause miscarriages or IUFDs, nor are they transmitted to fetuses. Yet, more than half the expectant mothers were susceptible to infection by the MCPyV. Background tumorigenic MCPyV [5], also found in the nasopharynx Among the five* human polymaviruses known, aside [13-15], the mode of transmission and, host cells, as from the BK virus (BKV) and JC virus (JCV) [1,2], well as latency characteristics are yet to be established. -
Identification of a Novel Polyomavirus from Patients with Acute Respiratory Tract Infections Anne M
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2007 Identification of a novel polyomavirus from patients with acute respiratory tract infections Anne M. Gaynor Washington University School of Medicine in St. Louis Michael D. Nissen Royal Children’s Hospital, Brisbane, Queensland, Australia David M. Whiley Royal Children’s Hospital, Brisbane, Queensland, Australia Ian M. Mackay Royal Children’s Hospital, Brisbane, Queensland, Australia Stephen B. Lambert Royal Children’s Hospital, Brisbane, Queensland, Australia See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Part of the Medicine and Health Sciences Commons Recommended Citation Gaynor, Anne M.; Nissen, Michael D.; Whiley, David M.; Mackay, Ian M.; Lambert, Stephen B.; Wu, Guang; Brennan, Daniel C.; Storch, Gregory A.; Sloots, Theo P.; and Wang, David, ,"Identification of a novel polyomavirus from patients with acute respiratory tract infections." PLoS Pathogens.,. e64. (2007). https://digitalcommons.wustl.edu/open_access_pubs/872 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Anne M. Gaynor, Michael D. Nissen, David M. Whiley, Ian M. Mackay, Stephen B. Lambert, Guang Wu, Daniel C. Brennan, Gregory A. Storch, Theo P. Sloots, and David Wang This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/872 Identification of a Novel Polyomavirus from Patients with Acute Respiratory Tract Infections Anne M. Gaynor1, Michael D. Nissen2, David M. -
Immunohistochemical Detection of KI Polyomavirus in Lung and Spleen
Virology 468-470 (2014) 178–184 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Immunohistochemical detection of KI polyomavirus in lung and spleen Erica A. Siebrasse 1,a, Nang L. Nguyen a,1, Colin Smith b, Peter Simmonds c, David Wang a,n a Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St. Louis, MO 63110, USA b Department of Pathology, University of Edinburgh, Scotland, UK c Roslin Institute, University of Edinburgh, Scotland, UK article info abstract Article history: Little is known about the tissue tropism of KI polyomavirus (KIPyV), and there are no studies to date Received 23 April 2014 describing any specific cell types it infects. The limited knowledge of KIPyV tropism has hindered study of Returned to author for revisions this virus and understanding of its potential pathogenesis in humans. We describe tissues from two 28 July 2014 immunocompromised patients that stained positive for KIPyV antigen using a newly developed immuno- Accepted 5 August 2014 histochemical assay targeting the KIPyV VP1 (KVP1) capsid protein. In the first patient, a pediatric bone Available online 3 September 2014 marrow transplant recipient, KVP1 was detected in lung tissue. Double immunohistochemical staining Keywords: demonstrated that approximately 50% of the KVP1-positive cells were CD68-positive cells of the macro- KI polyomavirus phage/monocyte lineage. In the second case, an HIV-positive patient, KVP1 was detected in spleen and lung Tissue tropism tissues. These results provide the first identification of a specific cell type in which KVP1 can be detected and Immunohistochemistry expand our understanding of basic properties and in vivo tropism of KIPyV. -
Recent Developments in Studying Human Polyomaviruses
Journal of General Virology (2013), 94, 482–496 DOI 10.1099/vir.0.048462-0 Review From Stockholm to Malawi: recent developments in studying human polyomaviruses Mariet C. W. Feltkamp,1 Siamaque Kazem,1 Els van der Meijden,1 Chris Lauber1 and Alexander E. Gorbalenya1,2 Correspondence 1Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands Mariet Feltkamp 2Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, [email protected] 119899 Moscow, Russia Until a few years ago the polyomavirus family (Polyomaviridae) included a dozen viruses identified in avian and mammalian hosts. Two of these, the JC and BK-polyomaviruses isolated a long time ago, are known to infect humans and cause severe illness in immunocompromised hosts. Since 2007 an unprecedented number of eight novel polyomaviruses were discovered in humans. Among them are the KI- and WU-polyomaviruses identified in respiratory samples, the Merkel cell polyomavirus found in skin carcinomas and the polyomavirus associated with trichodysplasia spinulosa, a skin disease of transplant patients. Another four novel human polyomaviruses were identified, HPyV6, HPyV7, HPyV9 and the Malawi polyomavirus, so far not associated with any disease. In the same period several novel mammalian polyomaviruses were described. This review summarizes the recent developments in studying the novel human polyomaviruses, and touches upon several aspects of polyomavirus virology, pathogenicity, epidemiology and phylogeny. Introduction polyomaviruses were identified in rodents, cattle and birds, but not in humans until this century. The polyomaviruses have been recognized as a separate virus family (Polyomaviridae) consisting of several species From 2005 on, eight novel human polyomaviruses (HPyV) since 1999. -
Antibodies Response to Polyomaviruses Primary Infection: High Seroprevalence of Merkel Cell
Antibodies response to Polyomaviruses primary infection: high seroprevalence of Merkel Cell Polyomavirus and lymphoid tissues involvement. Carolina Cason1, Lorenzo Monasta2, Nunzia Zanotta2, Giuseppina Campisciano2, Iva Maestri3, Massimo Tommasino4, Michael Pawlita5, Sonia Villani6, Manola Comar1,2, Serena Delbue6,*. Authors affiliations: 1 Department of Medical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy. 2Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell' Istria 65/1, 34137 Trieste, Italy. 3Department of Experimental and Diagnostic Medicine, Pathology Unit of Pathologic Anatomy, Histology and Cytology University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy. 4Infections and Cancer Biology Group, International Agency for Research on Cancer, Cours Albert Thomas 150, 69372 Lyon, France. 5German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. 6Department of Biomedical, Surgical & Dental Sciences, University of Milano, Via Pascal 36, 20100 Milano, Italy. * Corresponding author: [email protected], +390250315070 1 ABSTRACT Human polyomaviruses (HPyVs) asymptomatically infect the human population establishing latency in the host and their seroprevalence can reach 90% in healthy adults. Few studies have focused on the pediatric population and there are no reports regarding the seroprevalence of all the newly isolated HPyVs among Italian children. Therefore, we investigated the frequency of serum antibodies against 12 PyVs in 182 immunocompetent children from Northeast Italy, by means of a multiplex antibody detection system. Additionally, secondary lymphoid tissues were collected to analyze the presence of HPyVs DNA sequences using a specific Real Time PCRs or PCRs. Almost 100% of subjects were seropositive for at least one PyV. Seropositivity ranged from 3% for antibodies against Simian virus 40 (SV40) in children from 0 to 3 years, to 91% for antibodies against WU polyomavirus (WUPyV) and HPyV10 in children from 8 to 17 years. -
The Mirna World of Polyomaviruses Ole Lagatie1*, Luc Tritsmans2 and Lieven J Stuyver1
Lagatie et al. Virology Journal 2013, 10:268 http://www.virologyj.com/content/10/1/268 REVIEW Open Access The miRNA world of polyomaviruses Ole Lagatie1*, Luc Tritsmans2 and Lieven J Stuyver1 Abstract Polyomaviruses are a family of non-enveloped DNA viruses infecting several species, including humans, primates, birds, rodents, bats, horse, cattle, raccoon and sea lion. They typically cause asymptomatic infection and establish latency but can be reactivated under certain conditions causing severe diseases. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in several cellular processes by binding to and inhibiting the translation of specific mRNA transcripts. In this review, we summarize the current knowledge of microRNAs involved in polyomavirus infection. We review in detail the different viral miRNAs that have been discovered and the role they play in controlling both host and viral protein expression. We also give an overview of the current understanding on how host miRNAs may function in controlling polyomavirus replication, immune evasion and pathogenesis. Keywords: Polyomaviruses, microRNAs, Virus-host interaction, Immune evasion Review for BKPyV, Merkel cell carcinoma (MCC) for Merkel General overview of polyomaviruses Cell Virus (MCPyV) and trichodysplasia spinulosa for Polyomaviruses comprise a family of DNA tumor vi- Trichodysplasia spinulosa-associated Polyomavirus (TSPyV) ruses. They are non-enveloped and have a circular, [4,10,11,14-20]. One of the most striking observations is the double stranded DNA genome of around 5,100 bp [1]. fact that asymptomatic infection occurs during childhood The virion consists of 72 pentamers of the capsid pro- which is followed ordinarily by life-long asymptomatic tein VP1 with a single copy of VP2 and VP3 associated persistence [21]. -
Advances in Human Polyomaviruses Field
rren : Cu t R y es g e lo a o r r c i h V Virology: Current Research Ciotti, Virol Curr Res 2017, 1:1 Editorial Open Access Advances in Human Polyomaviruses Field Marco Ciotti* Laboratory of Molecular Virology, Polyclinic Tor Vergata Foundation, Viale Oxford 81, 00133 Rome, Italy *Corresponding author: Ciotti M, Laboratory of Molecular Virology, Polyclinic Tor Vergata Foundation, Viale Oxford 81, 00133 Rome, Italy, Tel: +390620902087; E-mail: [email protected] Received date: February 27, 2017; Accepted date: March 02, 2017; Published date: March 02, 2017 Copyright: © 2017 Ciotti M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Editorial References Polyomaviruses are small non-enveloped DNA viruses with a 1. Gardner SD, Field AM, Coleman DV, Hulme B (1971) New human circular double stranded genome of about 5 Kb in length. The genome papovavirus (B.K.) isolated from urine after renal transplantation. Lancet is contained in a capsid with icosahedral structure of about 45 nm in 1: 1253-1257. diameter. 2. Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ, Dessel BH (1971) Cultivation of papova-like virus from human brain with progressive Up to 2007, two human polyomaviruses BK (BKPyV) and JC multifocal leucoencephalopathy. Lancet 1: 1257-1260. (JCPyV) were known and named after the initials of the patients where 3. Allander T, Andreasson K, Gupta S, Bjerkner A, Bogdanovic G, et al. they were first isolated. BKV was isolated from the urine of a kidney (2007) Identification of a Third Human Polyomavirus. -
Coevolution of Persistently Infecting Small DNA Viruses and Their Hosts
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 4117-4121, May 1993 Evolution Coevolution of persistently infecting small DNA viruses and their hosts linked to host-interactive regulatory domains (polyomavirus/papillomavirus/parvovirus/retinoblastoma protein/p53 protein) F. F. SHADAN AND Luis P. VILLARREAL Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92717 Communicated by Francisco J. Ayala, January 8, 1993 ABSTRACT Although most RNA viral genomes (and re- transcriptase-mediated, vertically transmitted transposable el- lated cellular retroposons) can evolve at rates a millionfold ements (cellular retroposons) appear to result in a dislinkage greater than that of their host genomes, some of the small DNA from the much slower rates of host species evolution (for viruses (polyomaviruses and papillomaviruses) appear to evolve review see ref. 5). Yet high rates of evolution and adaptation at much slower rates. These DNA viruses generally cause host to cause disease may not be a characteristic ofall viral families. species-specific inapparent primary infections followed by life- Some virus families (especially the small DNA viruses, long, benign persistent infections. Using global progressive including the Polyomaviridae, Papillomaviridae, and some sequence alignments for kidney-specific Polyomaviridae (mouse, Parvoviridae), however, appear to be relatively stable genet- hamster, primate, human), we have constructed parsimonious ically and also may not fit a predator-prey population model. evolutionary trees for the viral capsid proteins (VP1, VP2/VP3) In contrast to many RNA and some other viruses, the small and the large tumor (T) antigen. We show that these three coding DNA viruses generally cause inapparent primary infections sequences can yield phylogenetic trees similar to each other and followed by lifelong persistent infection with little disease to that of their host species. -
Review Article Human Polyomavirus Reactivation: Disease Pathogenesis and Treatment Approaches
Hindawi Publishing Corporation Clinical and Developmental Immunology Volume 2013, Article ID 373579, 27 pages http://dx.doi.org/10.1155/2013/373579 Review Article Human Polyomavirus Reactivation: Disease Pathogenesis and Treatment Approaches Cillian F. De Gascun1 and Michael J. Carr2 1 DepartmentofVirology,FrimleyParkHospital,Frimley,SurreyGU167UJ,UK 2 National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland Correspondence should be addressed to Cillian F. De Gascun; [email protected] Received 4 February 2013; Revised 27 March 2013; Accepted 27 March 2013 Academic Editor: Mario Clerici Copyright © 2013 C. F. De Gascun and M. J. Carr. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. JC and BK polyomaviruses were discovered over 40 years ago and have become increasingly prevalent causes of morbidity and mortality in a variety of distinct, immunocompromised patient cohorts. The recent discoveries of eight new members of the Polyomaviridae family that are capable of infecting humans suggest that there are more to be discovered and raise the possibility that they may play a more significant role in human disease than previously understood. In spite of this, there remains a dearth of specific therapeutic options for human polyomavirus infections and an incomplete understanding of the relationship between the virus and the host immune system. This review summarises the human polyomaviruses with particular emphasis on pathogenesis in those directly implicated in disease aetiology and the therapeutic options available for treatment in the immunocompromised host. 1. Introduction were far more prevalent in the general population than the incidence of the diseases that they caused (PML and BKV- Polyomaviruses (PyV) are small (diameter 40–50 nm), associated nephropathy (BKVN), resp.) [12]. -
S1: Details of Polyomaviridae Genomes Used in the Study Serial No
S1: Details of Polyomaviridae genomes used in the study Serial No. Genome Genome Genome Family Genus Virus name(s) Host Accession No. Virus abbreviation Size (kbp) GC% Serial No. Shape 1 BM2 dsDNA circular Polyomaviridae Alphapolyomavirus Bat polyomavirus 5b2 Acerodon celebensis [TAX:58057] AB972940 BatPyV5b-2 5040 41.825397 2 BM3 dsDNA circular Polyomaviridae Alphapolyomavirus Bat polyomavirus 3a-A1055 Artibeus planirostris [TAX:40230] JQ958886 BatPyV3a-A1055 5019 41.223351 3 BM4 dsDNA circular Polyomaviridae Alphapolyomavirus Bat polyomavirus 4a Artibeus planirostris [TAX:40230] JQ958890 BatPyV4a 5187 44.225949 4 BM5 dsDNA circular Polyomaviridae Alphapolyomavirus Ateles paniscus polyomavirus 1 Ateles paniscus [TAX:9510] NC_019853 ApanPyV1 5273 44.35805 5 BM6 dsDNA circular Polyomaviridae Alphapolyomavirus Cardioderma polyomavirus Chiroptera [TAX:9397] ; Cardioderma cor [TAX:270764] NC_020067 CardiodermaPyV 5372 41.269546 6 BM7 dsDNA circular Polyomaviridae Alphapolyomavirus Bat polyomavirus 4b Carollia perspicillata [TAX:40233] NC_028120 BatPyV4b 5352 42.376682 7 BM8 dsDNA circular Polyomaviridae Alphapolyomavirus Vervet monkey polyomavirus 1 Chlorocebus pygerythrus [TAX:60710] NC_019844 VmPyV1 5157 39.635447 8 BM9 dsDNA circular Polyomaviridae Alphapolyomavirus Vervet monkey polyomavirus 3 Chlorocebus pygerythrus [TAX:60710] NC_025898 VmPyV3 5055 41.186944 9 BM10 dsDNA circular Polyomaviridae Alphapolyomavirus Bat polyomavirus 5a Dobsonia moluccensis [TAX:42147] NC_026768 BatPyV5a 5075 39.527094 10 BM11 dsDNA circular Polyomaviridae