Functional Roles of the E3 Ubiquitin Ligase UBR5 in Cancer Robert F

Total Page:16

File Type:pdf, Size:1020Kb

Functional Roles of the E3 Ubiquitin Ligase UBR5 in Cancer Robert F Published OnlineFirst October 13, 2015; DOI: 10.1158/1541-7786.MCR-15-0383 Review Molecular Cancer Research Functional Roles of the E3 Ubiquitin Ligase UBR5 in Cancer Robert F. Shearer1,2, Mary Iconomou1,2, Colin K.W. Watts1, and Darren N. Saunders1,3 Abstract The Ubiquitin-Proteasome System (UPS) is an important tion of DNA damage response, metabolism, transcription, and regulator of cell signaling and proteostasis, which are essential apoptosis. Hence, UBR5 is a key regulator of cell signaling to a variety of cellular processes. The UPS is disrupted in many relevant to broad areas of cancer biology. However, the mech- diseases including cancer, and targeting the UPS for cancer anism by which UBR5 may contribute to tumor initiation and therapy is gaining wide interest. E3 ubiquitin ligases occupy progression remains poorly defined. This review synthesizes a key position in the hierarchical UPS enzymatic cascade, emerging insights from genetics, biochemistry, and cell biology largely responsible for determining substrate specificity and to inform our understanding of UBR5 in cancer. These molec- ubiquitin (Ub) chain topology. The E3 ligase UBR5 (aka ular insights indicate a role for UBR5 in integrating/coordinat- EDD1) is emerging as a key regulator of the UPS in cancer ing various cellular signaling pathways. Finally, we discuss and development. UBR5 expression is deregulated in many outstanding questions in UBR5 biology and highlight the need cancer types and UBR5 is frequently mutated in mantle cell to systematically characterize substrates, and address limita- lymphoma. UBR5 is highly conserved in metazoans, has tions in current animal models, to better define the role of unique structural features, and has been implicated in regula- UBR5 in cancer. Mol Cancer Res; 13(12); 1523–32. Ó2015 AACR. Ubiquitination and the Role of E3 Ubiquitin provides tissue specificity and fine-scale regulation of signaling Ligases outputs (6). Correct functioning of the UPS is essential for many cellular Ubiquitination is one of the most widespread and frequent processes such as cell-cycle progression and apoptosis. Conse- cellular posttranslational modifications (PTM) and is essential for quently, the UPS is the subject of intense interest for its therapeutic normal cellular functions. Ubiquitination can regulate protein potential in many diseases including cancer [reviewed elsewhere levels via degradation by the proteasome (1, 2), regulate protein– (8)]. Currently, only broad-acting proteasome inhibitors are in protein interactions, and modulating protein function and local- clinical use. Proteasome inhibitors bortezomib (Velcade) and ization (3, 4). The small protein modifier Ubiquitin (Ub) forms carfilzomib (Kyprolis) have reached phase II clinical trials for use an isopeptide bond with substrate proteins via acceptor lysine in mantle cell lymphoma (MCL) and multiple myeloma (9–12), residues in a hierarchical enzymatic reaction catalyzed by an E3 although use is associated with peripheral neuropathy (12, 13). Ub ligase (5). Much variety in Ub modification of substrate The E3 ligase modulator Lenalidomide (Revlimid, an analogue of proteins arises from the ability of Ub to form either single Thalidomide), is also used in treatment of multiple myeloma but conjugates (mono-ubiquitination) or chains (poly-ubiquitina- has associated resistance and toxicity (14). tion) after repeated rounds of Ub attachment (6). Further com- The UPS targets a large range of proteins with important roles in plexity and diversity in Ub PTMs is generated by variation in Ub cancer biology. Therapeutic benefit with reduced toxicity might be chain topology, depending on which Ub lysine residue is further obtained by targeting more specific aspects of the UPS. For ubiquitinated on the growing poly-Ub chain. Various poly-Ub example, Ub-specific proteases, an extensive class of de-ubiqui- chain topologies are known to effect different signaling outcomes tinating enzymes, have promise as therapeutic targets (15). Of via binding to specific adaptor proteins [reviewed elsewhere (4)]. comparable interest and specificity are the E3 Ub ligases, espe- Specificity of the Ubiquitin-Proteasome System (UPS) is largely cially as key proteins commonly associated with proliferation and determined by the approximately 617 (human) E3 Ub ligases (7), cell-cycle arrest (such as p53, p27, Cyclins, and NF-kB) are but significant pleiotropy and redundancy among E3 Ub ligases specifically regulated by these enzymes (16). One of the more intriguing members of the E3 ligase family is 1 UBR5 [Ubiquitin protein ligase E3 component n-recognin 5, also Kinghorn Cancer Centre, Garvan Institute of Medical Research, Dar- fi linghurst, Australia. 2St.Vincent's Clinical School, Faculty of Medicine, known as EDD (E3 identi ed by Differential Display), EDD1, University of New South Wales, Sydney, Australia. 3School of Medical HHYD, KIAA0896, or DD5]. UBR5 is highly conserved (17) and is Sciences, Faculty of Medicine, University of New South Wales, Sydney, essential for mammalian development (18). UBR5 is rarely Australia. mutated in healthy somatic tissues, but is mutated and/or over- Corresponding Author: Darren N. Saunders, School of Medical Sciences, Uni- expressed in cancer (19, 20). UBR5 is known to modulate the versity of New South Wales, Sydney, NSW 2052, Australia. Phone: 61-2- DNA damage response (DDR) and transcription (see below for 93852494; Fax: 61-2-92958100; E-mail: [email protected] detailed discussion), and emerging roles for UBR5 in a number of doi: 10.1158/1541-7786.MCR-15-0383 biologic contexts have been identified using high-throughput, Ó2015 American Association for Cancer Research. functional genomics screens. This review will summarize the www.aacrjournals.org 1523 Downloaded from mcr.aacrjournals.org on October 1, 2021. © 2015 American Association for Cancer Research. Published OnlineFirst October 13, 2015; DOI: 10.1158/1541-7786.MCR-15-0383 Shearer et al. characterized and emerging biologic roles of UBR5, its role in UBR5 is highly overexpressed in breast cancer at the mRNA level tumorigenesis, and its potential as a therapeutic target. with increases in UBR5 protein also evident in many samples (19). This indicates that regulation of UBR5 is likely at the Unique Genomic and Protein Structure of transcriptional level, though regulation of activity may also occur UBR5 through PTM. Many phosphorylation sites have been identified in UBR5 (see Fig. 1; refs. 34–41), and UBR5 is known to be a UBR5 is a homologue of hyperplastic discs (HYD), a Drosophila phosphorylation target of ATM (42), CHK (43), and ERK kinases melanogaster tumor suppressor (21). Mammalian UBR5 is a HECT (44). However, this phosphorylation has not as yet been directly (homologous to E6-associated protein at the carboxy-terminus) linked to UBR5 activity. E3 Ub ligase recognizing n-degrons (see Fig. 1; refs. 17, 22). The human UBR5 gene has 59 exons, encoding an approximately 10 UBR5 in Cancer kb mRNA and >300 kDa protein with widespread expression in various cell types. One splice variant (loss of nucleotides 884– A number of studies have implicated UBR5 in various aspects 901, removing amino-acid sequence VLLLPL) has been identified of cancer biology and many of the molecular functions of UBR5 in 26/26 cancer cell lines investigated (19), although numerous (e.g., DDR) are consistent with a role in cancer. Indeed, the fi other splice variants are predicted in genome databases. The Drosophila homologue Hyd was originally identi ed as a tumor fi structural/functional consequences of these variants are not suppressor gene (21). Human UBR5 was originally identi ed in a known. UBR5 is highly conserved, but appears to be restricted screen for progestin-regulated genes in breast cancer cells (17). fi to the metazoan lineage, and based on phylogenetic analysis is Ampli cation of UBR5 has been reported in breast and ovarian grouped in a distinct class of HECT ligases (Class IV; ref. 23). Class cancer, mostly in the form of allelic imbalance resulting in IV likely evolved from a common ancestral gene duplication and increased UBR5 mRNA levels (19). UBR5 is located at genomic includes UBR5/EDD and three other families that are highly locus 8q22.3 (17), just downstream from MYC (8q22.4) but fi divergent at the sequence level. UBR5 ampli cation is independent of microsatellites examined HECT E3 Ub ligases have a well characterized mechanism, in the more distal regions of the 8q arm (19). Provisional data forming a thio-ester linkage between Ub and the substrate pro- from The Cancer Genome Atlas (TCGA) clearly show UBR5 fi tein, a reaction highly dependent on a conserved cysteine within ampli cation to be a common alteration in many cancer types the HECT domain (24, 25). The catalytically active HECT domain (see Fig. 2A). UBR5 has been shown to mediate therapeutic of UBR5 is made up of N- and C-lobes separated by a linker resistance in ovarian cancer (20), likely through modulation of fi sequence as determined by high-resolution crystallography (26). the DDR (see below). UBR5 was also identi ed in a transposon However, the HECT domain of UBR5 has some unique structural mutagenesis screen for cooperating mutations and pathways in features compared with other HECT ligases. The C-lobe of the pancreatic adenocarcinoma (45). UBR5 HECT domain does not have a surface for noncovalent Perhaps the most convincing evidence yet for an integral role binding of Ub, and it is unclear if this exists in the N-lobe (a feature for UBR5 in cancer comes from a recent
Recommended publications
  • The Cross-Talk Between Methylation and Phosphorylation in Lymphoid-Specific Helicase Drives Cancer Stem-Like Properties
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans ARTICLE OPEN The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties Na Liu1,2,3, Rui Yang1,2, Ying Shi1,2, Ling Chen1,2, Yating Liu1,2, Zuli Wang1,2, Shouping Liu1,2, Lianlian Ouyang4, Haiyan Wang1,2, Weiwei Lai1,2, Chao Mao1,2, Min Wang1,2, Yan Cheng5, Shuang Liu4, Xiang Wang6, Hu Zhou7, Ya Cao1,2, Desheng Xiao1 and Yongguang Tao1,2,6 Posttranslational modifications (PTMs) of proteins, including chromatin modifiers, play crucial roles in the dynamic alteration of various protein properties and functions including stem-cell properties. However, the roles of Lymphoid-specific helicase (LSH), a DNA methylation modifier, in modulating stem-like properties in cancer are still not clearly clarified. Therefore, exploring PTMs modulation of LSH activity will be of great significance to further understand the function and activity of LSH. Here, we demonstrate that LSH is capable to undergo PTMs, including methylation and phosphorylation. The arginine methyltransferase PRMT5 can methylate LSH at R309 residue, meanwhile, LSH could as well be phosphorylated by MAPK1 kinase at S503 residue. We further show that the accumulation of phosphorylation of LSH at S503 site exhibits downregulation of LSH methylation at R309 residue, which eventually promoting stem-like properties in lung cancer. Whereas, phosphorylation-deficient LSH S503A mutant promotes the accumulation of LSH methylation at R309 residue and attenuates stem-like properties, indicating the critical roles of LSH PTMs in modulating stem-like properties. Thus, our study highlights the importance of the crosstalk between LSH PTMs in determining its activity and function in lung cancer stem-cell maintenance.
    [Show full text]
  • The Nedd4 Family of E3 Ubiquitin Ligases: Functional Diversity Within a Common Modular Architecture
    Oncogene (2004) 23, 1972–1984 & 2004 Nature Publishing Group All rights reserved 0950-9232/04 $25.00 www.nature.com/onc The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture Robert J Ingham*,1, Gerald Gish1 and Tony Pawson1,2 1Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5; 2Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Neuronal precursor cell-expressed developmentally down- Nedd4 was originally identified in 1992, in a screen for regulated 4 (Nedd4)is the prototypical protein in a family genes developmentally downregulated in the early of E3 ubiquitin ligases that have a common domain embryonic mouse central nervous system (Kumar et al., architecture. They are comprised of a catalytic C-terminal 1992), and resembles other regulatory proteins in HECT domain and N-terminal C2 domain and WW containing multiple, distinct modular domains (Pawson domains responsible for cellular localization and substrate and Nash, 2003). Subsequently, related proteins with recognition. These proteins are found throughout eukar- similar structures have been characterized. All contain a yotes and regulate diverse biological processes through the catalytic HECT domain at the C-terminus, and an N- targeted degradation of proteins that generally have a terminal region involved in substrate recognition, that PPxY motif for WW domain recognition, and are found includes a C2 domain and a series of WW domains. in the nucleus and at the plasma membrane. Whereas the Although the common modular architecture of the yeast Saccharomyces cerevisiae uses a single protein, Nedd4 family might suggest a redundant functional role Rsp5p, to carry out these functions, evolution has provided for these proteins, recent work has begun to define higher eukaryotes with several related Nedd4 proteins that specific cellular activities for individual members, and to appear to have specialized roles.
    [Show full text]
  • A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons Takafumi Tasaki,1 Lubbertus C
    MOLECULAR AND CELLULAR BIOLOGY, Aug. 2005, p. 7120–7136 Vol. 25, No. 16 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.16.7120–7136.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons Takafumi Tasaki,1 Lubbertus C. F. Mulder,2 Akihiro Iwamatsu,3 Min Jae Lee,1 Ilia V. Davydov,4† Alexander Varshavsky,4 Mark Muesing,2 and Yong Tae Kwon1* Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 152611; Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 100162; Protein Research Network, Inc., Yokohama, Kanagawa 236-0004, Japan3; and Division of Biology, California Institute of Technology, Pasadena, California 911254 Received 15 March 2005/Returned for modification 27 April 2005/Accepted 13 May 2005 A subset of proteins targeted by the N-end rule pathway bear degradation signals called N-degrons, whose determinants include destabilizing N-terminal residues. Our previous work identified mouse UBR1 and UBR2 as E3 ubiquitin ligases that recognize N-degrons. Such E3s are called N-recognins. We report here that while double-mutant UBR1؊/؊ UBR2؊/؊ mice die as early embryos, the rescued UBR1؊/؊ UBR2؊/؊ fibroblasts still retain the N-end rule pathway, albeit of lower activity than that of wild-type fibroblasts. An affinity assay for proteins that bind to destabilizing N-terminal residues has identified, in addition to UBR1 and UBR2, a huge (570 kDa) mouse protein, termed UBR4, and also the 300-kDa UBR5, a previously characterized mammalian E3 known as EDD/hHYD.
    [Show full text]
  • Degradation and Beyond: Control of Androgen Receptor Activity by the Proteasome System
    CELLULAR & MOLECULAR BIOLOGY LETTERS Volume 11, (2006) pp 109 – 131 http://www.cmbl.org.pl DOI: 10.2478/s11658-006-0011-9 Received: 06 December 2005 Revised form accepted: 31 January 2006 © 2006 by the University of Wrocław, Poland DEGRADATION AND BEYOND: CONTROL OF ANDROGEN RECEPTOR ACTIVITY BY THE PROTEASOME SYSTEM TOMASZ JAWORSKI Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland Abstract: The androgen receptor (AR) is a transcription factor belonging to the family of nuclear receptors which mediates the action of androgens in the development of urogenital structures. AR expression is regulated post- * Corresponding author: e-mail: [email protected] Abbreviations used: AATF – apoptosis antagonizing factor; APIS complex – AAA proteins independent of 20S; ARA54 – AR-associated protein 54; ARA70 – AR-associated protein 70; ARE – androgen responsive element; ARNIP – AR N-terminal interacting protein; bFGF – basic fibroblast growth factor; CARM1 – coactivator-associated arginine methyltransferase 1; CHIP – C-terminus Hsp70 interacting protein; DBD – DNA binding domain; E6-AP – E6-associated protein; GRIP-1 – glucocorticoid receptor interacting protein 1; GSK3β – glycogen synthase kinase 3β; HDAC1 – histone deacetylase 1; HECT – homologous to the E6-AP C-terminus; HEK293 – human embryonal kidney cell line; HepG2 – human hepatoma cell line; Hsp90 – heat shock protein 90; IGF-1 – insulin-like growth factor 1; IL-6 – interleukin 6; KLK2 –
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • View Open Access HPV E6, E6AP and Cervical Cancer Sylvie Beaudenon1 and Jon M Huibregtse*2
    BMC Biochemistry BioMed Central Review Open Access HPV E6, E6AP and cervical cancer Sylvie Beaudenon1 and Jon M Huibregtse*2 Address: 1Asuragen, Inc., 2150 Woodward, Austin, TX 78744, USA and 2Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA Email: Jon M Huibregtse* - [email protected] * Corresponding author Published: 21 October 2008 <supplement> <title> <p>Ubiquitin-Proteasome System in Disease Part 2</p> </title> <editor>John Mayer and Rob Layfield</editor> <note>Reviews</note> </supplement> BMC Biochemistry 2008, 9(Suppl 1):S4 doi:10.1186/1471-2091-9-S1-S4 This article is available from: http://www.biomedcentral.com/1471-2091/9/S1/S4 © 2008 Beaudenon and Huibregtse; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Every year, approximately 470,000 new cases of cervical cancer are diagnosed and approximately 230,000 women worldwide die of the disease, with the majority (~80%) of these cases and deaths occurring in developing countries. Human papillomaviruses (HPVs) are the etiological agents in nearly all cases (99.7%) of cervical cancer, and the HPV E6 protein is one of two viral oncoproteins that is expressed in virtually all HPV-positive cancers. E6 hijacks a cellular ubiquitin ligase, E6AP, resulting in the ubiquitylation and degradation of the p53 tumor suppressor, as well as several other cellular proteins.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Regulation of P53 Localization and Transcription by the HECT Domain E3 Ligase WWP1
    Oncogene (2007) 26, 1477–1483 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc SHORT COMMUNICATION Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1 A Laine and Z Ronai Signal Transduction Program, The Burnham Institute for Medical Research, La Jolla, CA, USA As a key cellular regulatory protein p53 is subject to tight 2003; Doran et al., 2004; Shmueli and Oren, 2005; regulation by several E3 ligases. Here, we demonstrate the Harris and Levine, 2005). Common to these ligases is role of HECT domain E3 ligase, WWP1, in regulating p53 their role in limiting p53 stability and activity. In localization and activity. WWP1 associates withp53 and searching for protein ligases with different effects on p53 induces p53 ubiquitylation. Unlike other E3 ligases, activity, we identified the HECT domain E3 ligase WWP1 increases p53 stability; inhibition of WWP1 WWP1, whose interaction with p53 increases its stability expression or expression of a ligase-mutant form results while reducing its transcriptional activity. in decreased p53 expression. WWP1-mediated stabilization WW domain-containing protein 1 (WWP1) was first of p53 is associated withincreased accumulation of p53 in identified as a novelprotein based on its WW modules– cytoplasm witha concomitant decrease in its transcrip- a 35–40 amino-acid (aa) region exhibiting high affinity tional activities. WWP1 effects are independent of Mdm2 towards the PY motif, a proline-rich sequence followed as they are seen in cells lacking Mdm2 expression. by a tyrosine residue (Verdecia et al., 2003). WWP1 Whereas WWP1 limits p53 activity, p53 reduces expres- shares a characteristic domain organization with the E3 sion of WWP1, pointing to a possible feedback loop ligases Nedd4 and Smurfs, which consists of a C2 mechanism.
    [Show full text]
  • Functional Diversification of the Nleg Effector Family in Enterohemorrhagic Escherichia Coli
    Functional diversification of the NleG effector family in enterohemorrhagic Escherichia coli Dylan Valleaua, Dustin J. Littleb, Dominika Borekc,d, Tatiana Skarinaa, Andrew T. Quailea, Rosa Di Leoa, Scott Houlistone,f, Alexander Lemake,f, Cheryl H. Arrowsmithe,f, Brian K. Coombesb, and Alexei Savchenkoa,g,1 aDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; bDepartment of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; cDepartment of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390; dDepartment of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; ePrincess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2M9, Canada; fDepartment of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; and gDepartment of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada Edited by Ralph R. Isberg, Howard Hughes Medical Institute and Tufts University School of Medicine, Boston, MA, and approved August 15, 2018 (receivedfor review November 6, 2017) The pathogenic strategy of Escherichia coli and many other gram- chains. Depending on the length and nature of the polyubiquitin negative pathogens relies on the translocation of a specific set of chain, it posttranslationally regulates the target protein’s locali- proteins, called effectors, into the eukaryotic host cell during in- zation, activation, or degradation. Ubiquitination is a multistep fection. These effectors act in concert to modulate host cell pro- process which begins with the ubiquitin-activating enzyme (E1) cesses in favor of the invading pathogen. Injected by the type III using ATP to “charge” ubiquitin, covalently binding the ubiquitin secretion system (T3SS), the effector arsenal of enterohemorrhagic C terminus by a thioester linkage.
    [Show full text]
  • Chronic Exposure of Humans to High Level Natural Background Radiation Leads to Robust Expression of Protective Stress Response Proteins S
    www.nature.com/scientificreports OPEN Chronic exposure of humans to high level natural background radiation leads to robust expression of protective stress response proteins S. Nishad1,2, Pankaj Kumar Chauhan3, R. Sowdhamini3 & Anu Ghosh1,2* Understanding exposures to low doses of ionizing radiation are relevant since most environmental, diagnostic radiology and occupational exposures lie in this region. However, the molecular mechanisms that drive cellular responses at these doses, and the subsequent health outcomes, remain unclear. A local monazite-rich high level natural radiation area (HLNRA) in the state of Kerala on the south-west coast of Indian subcontinent show radiation doses extending from ≤ 1 to ≥ 45 mGy/y and thus, serve as a model resource to understand low dose mechanisms directly on healthy humans. We performed quantitative discovery proteomics based on multiplexed isobaric tags (iTRAQ) coupled with LC–MS/MS on human peripheral blood mononuclear cells from HLNRA individuals. Several proteins involved in diverse biological processes such as DNA repair, RNA processing, chromatin modifcations and cytoskeletal organization showed distinct expression in HLNRA individuals, suggestive of both recovery and adaptation to low dose radiation. In protein–protein interaction (PPI) networks, YWHAZ (14-3-3ζ) emerged as the top-most hub protein that may direct phosphorylation driven pro- survival cellular processes against radiation stress. PPI networks also identifed an integral role for the cytoskeletal protein ACTB, signaling protein PRKACA; and the molecular chaperone HSPA8. The data will allow better integration of radiation biology and epidemiology for risk assessment [Data are available via ProteomeXchange with identifer PXD022380]. Te basic principles of low linear energy transfer (LET) ionizing radiation (IR) induced efects on mammalian systems have been broadly explored and there exists comprehensive knowledge on the health efects of high doses of IR delivered at high dose rates.
    [Show full text]
  • Role of Ubiquitin and the HPV E6 Oncoprotein in E6AP- Mediated Ubiquitination
    Role of ubiquitin and the HPV E6 oncoprotein in E6AP- mediated ubiquitination Franziska Mortensena,b, Daniel Schneidera,c, Tanja Barbica, Anna Sladewska-Marquardta, Simone Kühnlea,1, Andreas Marxb,c, and Martin Scheffnera,b,2 aDepartment of Biology, University of Konstanz, 78457 Konstanz, Germany; bKonstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany; and cDepartment of Chemistry, University of Konstanz, 78457 Konstanz, Germany Edited by Aaron Ciechanover, Technion-Israel Institute of Technology, Bat Galim, Haifa, Israel, and approved July 7, 2015 (received for review March 25, 2015) Deregulation of the ubiquitin ligase E6 associated protein (E6AP) autism spectrum disorders (15, 16) and (ii) in mice, results in encoded by the UBE3A gene has been associated with three dif- increased E6AP levels and autistic phenotypes (17). ferent clinical pictures. Hijacking of E6AP by the E6 oncoprotein of The notion that alteration of the substrate spectrum, loss of distinct human papillomaviruses (HPV) contributes to the develop- E3 function, and increased E3 function of E6AP contribute to ment of cervical cancer, whereas loss of E6AP expression or func- the development of distinct disorders indicates that expression tion is the cause of Angelman syndrome, a neurodevelopmental and/or E3 activity of E6AP have to be tightly controlled. Whereas disorder, and increased expression of E6AP has been involved in some mechanisms controlling transcription of the UBE3A gene autism spectrum disorders. Although these observations indicate have been identified (e.g., the paternal allele is silenced by a that the activity of E6AP has to be tightly controlled, only little is UBE3A antisense transcript) (14, 18), only little is known about known about how E6AP is regulated at the posttranslational level.
    [Show full text]
  • Limiting the Power of P53 Through the Ubiquitin Proteasome Pathway
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Limiting the power of p53 through the ubiquitin proteasome pathway Vinod Pant and Guillermina Lozano Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA The ubiquitin proteasome pathway is critical in restrain- Modification of p53 by ubiquitination and deubiquitina- ing the activities of the p53 tumor suppressor. Numerous tion is an important reversible mechanism that effectively E3 and E4 ligases regulate p53 levels. Additionally, regulates its functions (for reviews, see Jain and Barton deubquitinating enzymes that modify p53 directly or 2010; Brooks and Gu 2011; Love and Grossman 2012; indirectly also impact p53 function. When alterations of Hock and Vousden 2014). Mono- or polyubiquitination these proteins result in increased p53 activity, cells arrest of p53 by different E3 ligases regulates its nuclear ex- in the cell cycle, senesce, or apoptose. On the other hand, port, mitochondrial translocation, protein stability, and alterations that result in decreased p53 levels yield transcriptional activity. Another set of enzymes called tumor-prone phenotypes. This review focuses on the deubiquitinases (DUBs) can reverse these effects. Here, physiological relevance of these important regulators of we focus on ubiquitination as a mechanism for regulating p53 and their therapeutic implications. p53 stability and function and review current findings from in vivo models that evaluate the importance of the ubiquitin proteasome system in regulating p53. The p53 tumor suppressor maintains genomic integrity by primarily functioning as a sequence-specific DNA-binding Ubiquitination is critical for regulating p53 transcription factor (Vousden and Prives 2009).
    [Show full text]