Magnetic Nozzle Plasma Plume: Review of Crucial Physical Phenomena
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit AIAA 2012-4274 30 July - 01 August 2012, Atlanta, Georgia Magnetic Nozzle Plasma Plume: Review of Crucial Physical Phenomena Frans H. Ebersohn∗, Sharath S. Girimaji y, and David Staack z Texas A & M University, College Station, Texas 77843, USA John V. Shebalinx Astromaterials Research & Exploration Science Office, NASA Johnson Space Center, Houston, Texas 77058 Benjamin Longmier{ University of Michigan, Ann Arbor, Michigan, 48109, USA Chris Olsenk Ad Astra Rocket Company, Webster, Texas 77598 This paper presents a review of the current understanding of magnetic nozzle physics. The crucial steps necessary for thrust generation in magnetic nozzles are energy conver- sion, plasma detachment, and momentum transfer. The currently considered mechanisms by which to extract kinetic energy from the plasma include the conservation of the mag- netic moment adiabatic invariant, electric field forces, thermal energy directionalization, and Joule heating. Plasma detachment mechanisms discussed include resistive diffusion, recombination, magnetic reconnection, loss of adiabaticity, inertial forces, and self-field detachment. Momentum transfer from the plasma to the spacecraft occurs due to the interaction between the applied field currents and induced currents which are formed due to the magnetic pressure. These three physical phenomena are crucial to thrust generation and must be understood to optimize magnetic nozzle design. The operating dimension- less parameter ranges of six prominent experiments
[Show full text]