S O F T W a R E D E V E L O P E R ' S Q U a R T E R

Total Page:16

File Type:pdf, Size:1020Kb

S O F T W a R E D E V E L O P E R ' S Q U a R T E R SOFTWARE DEVELOPER’S QUARTERLY Issue 16• Jan 2011 Editor’s Note ........................................................................... 1 PARAVIEW 3.10 The ParaView team is gearing up for the next official release of ParaView, 3.10. Once released, the binaries will be avail- Recent Releases ..................................................................... 1 able for download on the ParaView download page: http:// paraview.org/paraview/resources/software.html. This release Medical Image Analysis with ITK on Apple iOS .................. 3 features notable developments, including mechanisms to incorporate advanced rendering techniques, improved Ultrasound and ITKv4 ........................................................... 6 support for readers and several usability enhancements and bug fixes. New Functionalities for Spherical Demons Registration .... 8 For the 3.10 release, we have refactored and vastly improved Adapting ITK Framework to Fit Parametric the VisIt-bridge plugin and several new file formats such as Image Models ...................................................................... 10 Silo, CGNS and Tecplot are now supported. Developers can also create ParaView reader plugins for VisIt readers. A Lightweight Image Comparison Library ........................ 13 With 3.10, we have included a Python-based calculator which makes it possible to write operations using Python. Using Kitware News ...................................................................... 15 the Python calculator, it is possible to use advanced functions such as gradients, curls and divergence easily in expression. There is also a new Eyedome Lighting (EDL), a non-photore- alistic shading technique designed at EDF (France) to improve depth perception in scientific visualization images (Figure 1). It relies on efficient post-processing passes implemented on Kitware is pleased to present this year's Insight Journal the GPU with GLSL shaders in order to achieve interactive special edition of the Source which features several of the rendering. Solely projected depth information is required strongest Insight Journal submissions from 2010. The Insight to compute the shading function, which is then applied to Journal was designed to provide a realistic support system the colored scene image. EDL can therefore be applied to for disseminating scientific research in the medical image any kind of data (isosurfaces, streamlines, point sprites, etc.), processing domain. Recognizing the need for a mechanism except those requiring transparency-based rendering. The whereby the medical image analysis community can collec- implementation of this technique opens the way to new tively share their ideas, code, data and results, Dr. Luis Ibàñez efficient post-processing effects in Paraview. has worked with the ISC and championed the open-science cause to make the Insight Journal a reality. By providing a platform for open-access scientific publica- tion, Kitware continues to foster its commitment to the open-science community. To continue celebrating this cause we annually publish this special Insight Journal Edition of the Source. Anyone may submit their work to the Insight Journal by registering, for free, at insight-journal.org; perhaps your work will be featured here next year! The Kitware Source is just one of a suite of products and services that Kitware offers to assist developers in getting the most out of its open-source products. Each project’s website contains links to free resources including mailing lists, documentation, FAQs and Wikis. In addition, Kitware supports its open-source projects with technical books, user’s guides, consulting services, support contracts and training Figure 1: An image produced on EDF physical simulation data courses. For more information on Kitware’s suite of products rendered with point sprites illustrates the effect of EDL (left) and services, please visit our website at www.kitware.com. compared to basic Phong shading (right). There should also be a marked performance improvement During this review of the toolkit, more explicit types were for users dealing with large multi-block datasets. We have introduced to represent the concepts of: cleaned up the rendering pipeline to better handle com- • IndexValueType: The component of the index that posite datasets, avoiding the appending of all blocks into a addresses a pixel in an image. single dataset as was done previously. • OffsetValueType: The difference between two such To better utilize multiple cores on modern mutli-core indexes. machines, by default ParaView can now run using a parallel • SizeValueType: The type used for counting number of server, even for the built-in mode. This enables the use of pixels or number of elements in an array. all the cores for parallel data processing, without requiring the user to start a parallel server. ParaView binaries will also With this modification, ITKv4 reaches another milestone to be distributed using an MPI implementation, making this provide support for the very large images that are becoming feature available to users by simply downloading the bina- the standard in fields such as microscopy, computer vision ries. Since this is an experimental feature, it is off by default, and remote sensing. but users can turn it on by checking the Auto-MPI checkbox in the application settings dialog. VTK 5.8 VTK 5.8 has had a major revamp of its wrapping infrastruc- For developers interested in adding support for advanced ture. The Python wrappers have been expanded to expose multi-pass rendering algorithms to ParaView, this release more of the C++ interface. Several special VTK types like includes a major refactoring of ParaView's rendering pipe- vtkVariant have been wrapped in Python, and the constants line. View and representations have been redesigned and defined in the header files are automatically wrapped. users should see improved performance in client-server Python method calls now support unicode strings, two- mode from reduced interprocess communication during dimensional arrays, pass-by-reference, default argument rendering. values, and typedef argument types. Additionally, the 3.10 release includes several usability enhancements. 3D View now supports smart context menus, accessed by right-clicking on any object in the 3D View to change its color, representation, color map and visibility. Left-clicking on an object in the 3D View makes it active in the pipeline browser. Within the spreadsheet view, sorting is now supported and an advanced parallel sorting algo- rithm ensures that none of the benefits of the spreadsheet view, such as streaming and selection, are sacrificed. Python tracing and macro controls are now exposed from the main menus, no longer hidden under the Python shell. For an exhaustive list of the new features and bug-fixes, please refer to the change log at: http://www.paraview.org/Bug/ changelog_page.php. CMAKE 2.8.4 The CMake version 2.8.4 release is scheduled for January 2011. The roadmap for bug fixes proposed to be included in the 2.8.4 release is at http://public.kitware.com/Bug/ roadmap_page.php. The change log for bugs that have already been fixed is at http://public.kitware.com/Bug/chan- gelog_page.php. Please try out the release candidates for CMake 2.8.4 to build your projects as they become available in January. Let us know on the CMake mailing list if you run into anything 2D histogram of the value of sin(x)*cos(y) with HSV color mapping unexpected. In addition, the code underlying the VTK wrapper-generators ITKV4 ALPHA-04 RELEASE has been revamped. It now includes a more-or-less complete In this alpha release of ITKv4, a large-scale revision of the C++ parser that no longer requires unwrappable sections of toolkit was made to replace the use of "long" and "unsigned the header files to be marked with BTX/ETX. The internal long" types with integer types suitable for addressing ele- data structures used by the wrapper generators have been ments of memory. expanded and cleaned up, so future enhancements of the wrappers will be much easier to achieve. The previous use of explicit "long" types in ITK was making it impossible to use images larger than 4GB in Windows The charts have been updated to make use of the 2D scene, 64bits platforms, since the "long" types in Windows 64bits with new text rendering and improved OpenGL render- only have a 32bits capacity, and therefore can only address ing routines. New chart types such as pie charts and 2D up to 4GB of memory. This problem does not exist in Linux histograms have been added. The scatter plot and parallel and Mac 64 bits platforms where "long" types are 64bits in coordinate plots can be colored by a scalar array, and mul- size. However, replacing "long" with "size_t" and its associ- tiple charts can now be rendered in the same scene. The old ated types prepares the toolkit for the larger number of bits Qt based charts have now been deprecated and are not built processors that we anticipate to have in the next decade. by default. 2 MEDICAL IMAGE ANALYSIS WITH ITK ON APPLE IOS Mobile computing devices are becoming increasingly impor- tant and prevalent. Apple’s mobile devices, the iPod touch, iPhone, and iPad, are notable examples. At the same time, ITK is becoming increasingly popular; implementing a large number of basic and advanced image processing, segmen- tation, and registration algorithms; and benefiting from a tremendous growth through open-source code contributed by leading research groups and individuals from around the Parallel coordinates plot world. The time is right to seriously explore the marriage of these two exciting parallel developments: ITK for medical VTK now also provides modern CMake Exports. Inclusion image analysis and iOS for mobile computing devices. of the VTKTargets.cmake file allows easy access to all VTK targets within your own projects that build against VTK. The ITK ON IOS UseVTK.cmake file has also been updated to automatically In the 2010 July-December issue of the Insight Journal [1] include VTKTargets.cmake. we were happy to share with the scientific community the detailed steps needed for building ITK on iOS and creating a basic ITK app on the iOS, which demonstrated successful basic integration.
Recommended publications
  • S O F T W a R E D E V E L O P E R ' S Q U a R T E R
    SOFTWARE DEVELOPER’S QUARTERLY Issue 12• Jan 2010 MIDAS 2.4 RELEASED AS OPEN SOURCE Editor’s Note ........................................................................... 1 Kitware is proud to announce the release of MIDAS 2.4, a major release implementing more than 20 new features. We Recent Releases ..................................................................... 1 are also happy to announce that the MIDAS source-code is now freely available under an unrestricted (BSD) license. A Synthetic LiDAR Scanner for VTK ..................................... 3 New Variational Level-Set Classes with Region Fitting Energy in ITK ......................................................................... 6 Alternative Memory Models for ITK..................................... 9 N3 Implementation for MRI Bias Field Correction ............ 11 Exporting Contours to DICOM-RTSTRUCT ......................... 13 Kitware News ...................................................................... 15 Kitware is pleased to present a special edition of the Source which features several of the strongest Insight Journal submissions from 2009. The Insight Journal was designed Improved image gallery with color selection to provide a realistic support system for disseminating sci- entific research in the medical image processing domain. For the past year MIDAS, Kitware’s digital archiving and Recognizing the need for a mechanism whereby the medical distributed processing system, has been generating a lot of image analysis community can collectively share their
    [Show full text]
  • Journal of Biomedical Engineering and Medical Imaging, Volume 3, No 6, December(2016), Pp 96-104
    ` VOLUME 3 ISSUE 6 Advantages and Disadvantages of using Third-party software in the development of the CAS_Annotate and CAS_Navigate Medical Applications 1João Fradinho Oliveira 1C3i/Instituto Politécnico de Portalegre, Portalegre, Portugal; [email protected] ABSTRACT This paper address the main design decision issues taken when using third party libraries in the creation of two medical applications [1] that specifically require editing or creating geometry from CT images (CAS_Annotate) and interactive 3D visualization (CAS_Navigate). Whilst the purpose of the first application was to research different 3D reconstruction algorithms, the second application was created to research different visual metaphors and the reconstructions themselves. This paper weights aspects such as the learning curve time versus coding in-house time, robustness and possible customization. In theory both applications could have been developed within the same IGTSK [2] framework, but the available project time and the development of different phases of the project made that impossible, instead a black box approach of using IGSTK's 3D Msh format was crucial to import algorithm results tested with a simple GLUT application, thus allowing development to be made in parallel. Keywords: Image guided surgery; 3D reconstruction; IGSTK. 9 Introduction Writing applications with third party software has always had many benefits such as access to functonality that would be prohibitive to implement in the time frame of a project, but also the known drawbacks regarding documentation and indeed the learning curve to be able to master and change those solutions at the required level for specific project needs. This paper outlines the requirements of two medical applications [1] CAS_Annotate (a tool that allows one to manually segment/edit contours of objects of interest in CT images and test-bed different 3D reconstruction algorithms) and CAS_Navigate (a tool that provides a road-map of pre-operative geometry of organs and vascular structures intraoperatively).
    [Show full text]
  • Quantifying Anatomical Shape with Slicersalt
    SOURCEA PUBLICATION FOR SOFTWARE DEVELOPERS Issue 44 Quantifying Anatomical Shape p.3 with SlicerSALT CONTENTS Kitware Source contains information on open source software. Since 2006, its articles have shared first-hand experiences from Kitware team members and those outside the company’s offices who use and/or develop platforms such as CMake, the Visualization Toolkit, ParaView, the Insight Segmentation and Registration Toolkit, Resonant and the Kitware Image and Video Exploitation and Retrieval toolkit. Readers who wish to share their own experiences or subscribe to the publication can connect with the Kitware Source editor at [email protected]. Kitware Source comes in multiple forms. Kitware mails hard p.3 copies to addresses in North America, and it publishes each issue as a series of posts on https://blog.kitware.com. GRAPHIC DESIGNER QUANTIFYING ANATOMICAL Steve Jordan SHAPE WITH SLICERSALT EDITORS Sandy McKenzie Mary Elise Dedicke GRAND OPENING PHOTOGRAPHER p.5 Elizabeth Fox Photography This work is licensed under an Attribution 4.0 International 3D SLICER AND VIRTUAL (CC BY 4.0) License. INSECT DISSECTION Kitware, ParaView, CMake, KiwiViewer and VolView are registered trademarks of Kitware, Inc. All other trademarks are property of their respective owners. COVER CONTENT Stanford Bunny image generated with SlicerSALT’s Shape Analysis Module. See “Quantifying Anatomical Shape with p.8 SlicerSALT,” which begins on page three, for Stanford bunny meshes. KITWARE NEWS 2 QUANTIFYING ANATOMICAL SHAPE WITH SLICERSALT Beatriz Paniagua Two years ago, the National Institute of Biomedical Imaging and Bioengineering funded an initiative to create open source software to enable biomedical researchers to generate shape analysis measurements from their medical images.
    [Show full text]
  • Open-Source Toolkit for Ultrasound-Guided
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 1 PLUS: open-source toolkit for ultrasound-guided intervention systems Andras Lasso, Member, IEEE, Tamas Heffter, Adam Rankin, Csaba Pinter, Tamas Ungi, and Gabor Fichtinger, Senior Member, IEEE Abstract—A variety of advanced image analysis methods have real-time US images with pre-operative computed tomography been under development for ultrasound-guided interventions. (CT) or magnetic resonance (MR) images ([5], [6], [7]). Unfortunately, the transition from an image analysis algorithm Such image fusion has already been developed for some to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and clinical applications with the help of US tracking, and it has tracking devices, data processing algorithms, and visualization the potential to transform the way many other radiological software. The objective of our work is to provide a freely available interventions are performed. Also, US imaging has a limited open-source software platform - PLUS: Public software Library field of view. US may fail to show the necessary anatomical for Ultrasound - to facilitate rapid prototyping of ultrasound- context for certain procedures, e.g., identification of a spinal guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose segment is difficult from just one US image. Tracked US can and ultrasound image acquisition from a wide range of tracking be extended by stitching together many US image slices and and imaging devices, spatial and temporal calibration, volume reconstructing them in a larger 3D image volume [8]. reconstruction, simulated image generation, and recording and The second major difficulty with US guidance is the co- live streaming of the acquired data.
    [Show full text]
  • 3D Slicer Documentation
    3D Slicer Documentation Slicer Community Sep 24, 2021 CONTENTS 1 About 3D Slicer 3 1.1 What is 3D Slicer?............................................3 1.2 License..................................................4 1.3 How to cite................................................5 1.4 Acknowledgments............................................7 1.5 Commercial Use.............................................8 1.6 Contact us................................................9 2 Getting Started 11 2.1 System requirements........................................... 11 2.2 Installing 3D Slicer............................................ 12 2.3 Using Slicer............................................... 14 2.4 Glossary................................................. 19 3 Get Help 23 3.1 I need help in using Slicer........................................ 23 3.2 I want to report a problem........................................ 23 3.3 I would like to request enhancement or new feature........................... 24 3.4 I would like to let the Slicer community know, how Slicer helped me in my research......... 24 3.5 Troubleshooting............................................. 24 4 User Interface 27 4.1 Application overview........................................... 27 4.2 Review loaded data............................................ 29 4.3 Interacting with views.......................................... 31 4.4 Mouse & Keyboard Shortcuts...................................... 35 5 Data Loading and Saving 37 5.1 DICOM data..............................................
    [Show full text]
  • Input Preparation, Data Visualization & Analysis
    Input Preparation, Data Visualization & Analysis June 8, 2013 LA-SiGMA Baton Rouge, LA Dr. Marcus D. Hanwell [email protected] http://openchemistry.org/ 1 Outline • Introduction • Kitware • Open Chemistry • Avogadro 2 • MoleQueue • MongoChem • The Future • Summary 2 Introduction • User-friendly desktop integration with – Computational codes – HPC/cloud resources – Database/informatics resources 3 Introduction • Bringing real change to chemistry – Open-source frameworks – Developed openly – Cross-platform compatibility – Tested and verified – Contribution model – Supported by Kitware experts • Liberally-licensed to facilitate research 4 Open Chemistry Development Team • Inter-disciplinary team at Kitware • The first three worked on open-source chemistry in their spare time • The final two are computer scientists with years of open-source experience • Seeking partners in industry & research, labs 5 Outline • Introduction • Kitware • Open Chemistry • Avogadro 2 • MoleQueue • MongoChem • The Future • Summary 6 Kitware • Founded in 1998 by five former GE Research employees • 118 current employees; 39 with PhDs • Privately held, profitable from creation, no debt • Rapidly Growing: >30% in 2011, 7M web-visitors/quarter • Offices • 2011 Small Business – Clifton Park, NY Administration’s Tibbetts Award – Carrboro, NC • HPCWire Readers – Santa Fe, NM and Editor’s Choice – Lyon, France • Inc’s 5000 List: 2008 to 2011 Kitware: Core Technologies CMake CDash 8 Supercomputing Visualization • Scientific Visualization • Informatics • Large Data
    [Show full text]
  • Kitware Source Issue 10
    SOFTWARE DEVELOPER’S QUARTERLY Issue 10 • July 2009 PARAVIEW 3.6 Editor’s Note ........................................................................... 1 Kitware, Sandia National Laboratories and Los Alamos National Lab are proud to announce the release of ParaView Recent Releases ..................................................................... 1 3.6. The binaries and sources are available for download from the ParaView website. This release includes several new Why and How Apache Qpid Converted to CMake ............. 3 features along with plenty of bug fixes addressing a multi- tude of usability and stability issues including those affecting parallel volume rendering. ParaView and Python ........................................................... 6 Based on user feedback, ParaView’s Python API has under- Introducing the VisTrails Provenance Explorer Plugin for gone a major overhaul. The new simplified scripting interface makes it easier to write procedural scripts mimicking the ParaView................................................................................. 8 steps users would follow when using the GUI to perform tasks such as creating sources, applying filters, etc. Details on CDash Subprojects ............................................................... 10 the new scripting API can be found on the Paraview Wiki. We have been experimenting with adding support for Kitware News ...................................................................... 14 additional file formats such as CGNS, Silo, Tecplot using VisIt plugins.
    [Show full text]
  • Implementation of the PLUS Open-Source Toolkit for Translational Research of Ultrasound-Guided Intervention Systems Release 0.2
    Implementation of the PLUS open-source toolkit for translational research of ultrasound-guided intervention systems Release 0.2 Andras Lasso, Tamas Heffter, Csaba Pinter, Tamas Ungi, and Gabor Fichtinger August 15, 2012 Laboratory for Percutaneous Surgery, School of Computing, Queen’s University, Kingston, ON, Canada Abstract This document describes the design of the PLUS (Public software Library for Ultrasound) open-source toolkit. The toolkit provides a basic infrastructure for implementing ultrasound-guided intervention systems. Functionalities include collection of synchronized ultrasound and position data from a wide variety of hardware devices, spatial and temporal calibration, volume reconstruction, live streaming to end-user applications, and recording to and replay from file. Source code, documentation, tutorials, application examples are available with a BSD-type license at the project website: www.assembla.com/spaces/plus. Contents 1. Introduction 2 2. Data representation 3 3. Data acquisition 4 4. Volume reconstruction 6 5. Live data streaming 7 6. Implementation 7 7. Results 10 8. Conclusion 11 9. Acknowledgments 11 10. References 12 2 1. Introduction Ultrasound (US) has a great potential in guiding medical interventions, as it is capable of acquiring real- time images, it has low cost, small size, and does not use ionizing radiation. Positioning of interventional tools can often be successfully completed by simple free-hand manipulation of the ultrasound transducer and surgical tools. However, there is a wide range of challenging procedures that require continuous tracking of the pose (position and orientation) of the images and surgical tools are required. Research and development of position tracked (also known as navigated) ultrasound guided intervention systems requires advanced engineering infrastructure, which has not been available in the public domain, and single project-based solutions have not proven to be suitable as reusable platforms.
    [Show full text]
  • S O F T W a R E D E V E L O P E R ' S Q U a R T E R
    SOFTWARE DEVELOPER’S QUARTERLY Issue 15• Oct 2010 Editor’s Note ........................................................................... 1 ITKV4 DEVELOPMENT Over the last quarter, the ITK development team released Recent Releases ..................................................................... 1 the first two Alpha versions of ITKv4. ITKv4 is a major refac- toring of the ITK toolkit that introduces improved wrapping Distributed Version Control: The Future of History ............ 2 for other languages, a modular architecture and revisions to Insight Toolkit Plug-ins: VolView and V3D .......................... 6 many of ITKs components. These two releases were intended to perform a general code clean up, dropping the tricks to VTK Wrapper Ovehaul 2010 .................................................. 9 support now-defunct compilers used in the past while paving the way for major refactoring activities to commence. The The CDash "@Home" Cloud ................................................ 12 next decade of ITK has begun. Multi-Resolution Streaming in VTK and ParaView ........... 13 Details One of the most significant operational changes is that the Community Spotlight .......................................................... 15 source code of ITK was moved to a Git repository and a new development workflow has been put in place in order to Kitware News ...................................................................... 20 integrate the teams that are collaborating in this new version of the toolkit. The major changes introduced in these two releases are described below. ITKv4-Alpha-01 The Kitware Source contains articles related to the develop- The following compilers were deprecated: Borland 5.5, Visual ment of Kitware projects in addition to a myriad of software Studio 6.0 and 7.0, SGI CC, Sun CC 5.6, Metrowerks. Source updates, news and other content relevant to the open source code that was intended solely to support these compilers community.
    [Show full text]
  • Kitware Source Issue 22
    SOFTWARE DEVELOPER’S QUARTERLY Issue 22 • July 2012 VTK 5.10 Editor's Note ........................................................................... 1 VTK 5.10 was released in May, with new and updated classes, utility improvements, and other enhancements. Recent Releases ...................................................................... 1 A new set of image rendering classes was incorporated for use in the next generation of VTK-based image viewer appli- cations. Like VTK's volume rendering classes, the new image Mobile Application Development : VES Library Insights .... 3 rendering classes consist of separate actor, mapper, and property classes for maximum flexibility. Many of the VTK reader classes were updated, including the LSDyna reader, Annotation Capabilities with VTK 5.10 ................................ 7 which resulted in read times for large (100 gigabyte) parallel data sets dropping from multiple hours to several minutes. Additionally, there is a new crop of NetCDF readers, and VTK Improvements in Path Tracing in VTK ............................... 10 now has true support for netcdf4 readers The Google Summer of Code 2011 work by David Lonie and Tharindu de Silva was incorporated into VTK. David Image-Guided Interventions Tutorial with IGSTK.............. 11 developed chemical structure visualization code, which adds accelerated rendering of 3D chemical geometry using stan- dard chemical representations. Tharindu worked on the 2D Creating a Virtual Brain Atlas with ITK .............................. 14 chart and plot features in VTK, improving chart interaction and adding support for keyboard modifiers to mouse and key events. Kitware News ....................................................................... 16 The Kitware Source contains articles related to the develop- ment of Kitware products in addition to software updates on recent releases, Kitware news, and other content relevant to the open-source community.
    [Show full text]
  • Arbitrary-Order Lagrange Cells in the Visualization Toolkit
    SOURCEA PUBLICATION FOR SOFTWARE DEVELOPERS Issue 43 Arbitrary-order Lagrange p.6 cells in the Visualization Toolkit CONTENTS Kitware Source contains information on open source software. Since 2006, its articles have shared first-hand experiences from Kitware team members and those outside the company’s offices who use and/or develop platforms such as CMake, the Visualization Toolkit, ParaView, the Insight Segmentation and Registration Toolkit, Resonant and the Kitware Image and Video Exploitation and Retrieval toolkit. Readers who wish to share their own experiences or subscribe to the publication can connect with the Kitware Source editor at [email protected]. Kitware Source comes in multiple forms. Kitware mails hard p.3 copies to addresses in North America, and it publishes each issue as a series of posts on https://blog.kitware.com. GRAPHIC DESIGNER COMPUTING GRADIENTS Steve Jordan IN PARAVIEW FOR EDITOR DATASETS WITH DIFFERENT Sandy McKenzie CELL DIMENSIONS This work is licensed under an Attribution 4.0 International (CC BY 4.0) License. p.6 Kitware, ParaView, CMake, KiwiViewer and VolView are registered trademarks of Kitware, Inc. All other trademarks MODELING ARBITRARY- are property of their respective owners. ORDER LAGRANGE FINITE COVER CONTENT The new Lagrange cells in the Visualization Toolkit can ELEMENTS IN THE capture complex behavior within a single cell. The image on VISUALIZATION TOOLKIT the cover shows 50 fifth-order Lagrange triangles colored by cell. See “Modeling Arbitrary-order Lagrange Finite Elements in the Visualization Toolkit,” which begins on page six, for p.10 more renderings of Lagrange cells. KITWARE NEWS 2 COMPUTING GRADIENTS IN PARAVIEW FOR DATASETS WITH DIFFERENT CELL DIMENSIONS Andrew Bauer In scientific visualization, gradient computations vary based on the use case.
    [Show full text]
  • A Modular Framework Integrating Visualization, Image Processing and Biomechanical Modeling
    CamiTK: A Modular Framework Integrating Visualization, Image Processing and Biomechanical Modeling Céline Fouard, Aurélien Deram, Yannick Keraval and Emmanuel Promayon Abstract In this paper, we present CamiTK, a specific modular framework that helps researchers and clinicians to collaborate in order to prototype Computer Assisted Medical Intervention (CAMI) applications by using the best knowledge and know-how during all the required steps. CamiTK is an open-source, cross- platform generic tool, written in C++, which can handle medical images, surgical navigations and biomechanical simulations. This paper first gives an overview of CamiTK core architecture and how it can be extended to fit particular scientific needs. The MML extension is then presented: it is an environment for comparing and evaluating soft-tissue simulation models and algorithms. Specifically designed as a soft-tissue simulation benchmark and a reference database for validation, it can compare models and algorithms built from different modeling techniques or biomechanical software. This article demonstrates the use of CamiTK on a text- book but complete example, where the medical image and MML extensions are collaborating in order to process and analyze MR brain images, reconstruct a patient-specific mesh of the brain, and simulate a basic brain-shift with different biomechanical models from ANSYS, SOFA and ArtiSynth. C. Fouard (&) Á A. Deram Á Y. Keraval Á E. Promayon UJF-Grenoble 1/CNRS/TIMC-IMAG, UMR 5525, 38041 Grenoble, France e-mail: [email protected] A. Deram e-mail: [email protected] E. Promayon e-mail: [email protected] Stud Mechanobiol Tissue Eng Biomater DOI: 10.1007/8415_2012_118 Ó Springer-Verlag Berlin Heidelberg 2012 C.
    [Show full text]