Strategic Environmental Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Strategic Environmental Assessment Msunduzi Municipality Final Draft Strategic Environmental Assessment Report Prepared for Department of Environmental Affairs, Department of Agriculture, Environmental Affairs and Rural Development, and Msunduzi Municipality Report No: 376998/FDSEA May 2010 SRK Consulting Msunduzi Final Draft SEA Page ii Executive Summary Introduction The Msunduzi Municipality (Msunduzi), in partnership with the national Department of Environmental Affairs (DEA),(formerly the Department of Environmental Affairs and Tourism (DEAT)) and the KwaZulu-Natal Department of Agriculture, Environmental Affairs and Rural Development (DAEA&RD)(formerly the Department of Agriculture and Environmental Affairs (DAEA)), have recognised the need for an appropriate policy to inform development planning and approval that supports sustainable development in the Municipality. SRK Consulting (SRK) was therefore appointed to execute the following tasks for Msunduzi: • Status Quo Analysis (State of the Environment); • Strategic Environmental Assessment (SEA); • Municipal Open Space System (MOSS); • Strategic Environmental Management Plan (SEMP) and • Environmental Management Framework (EMF). This report constitutes the product of the SEA process undertaken as part of the Msunduzi EMF. The need for an SEA results from the limitations of project specific EIA’s and the need to ensure that environmental issues are proactively addressed in policies, plans and programs. SEA is however still evolving and there is no definitive approach that can be applied in all circumstances. Rather, each SEA is specifically tailored to meet the needs and specific issues and inform decision making when such development applications are received. The Msunduzi SEA takes the form of a sustainability framework by providing a set of criteria against which the Municipality can assess any policy, program or plan. The sustainability framework developed within this SEA process was, for example, used to assess the sustainability of the recently adopted Spatial Development Framework (SDF). The SEA was developed using information gathered during the Status Quo phase; from literature reviews; and, specialist studies undertaken. This research was supplemented by public and authority consultation. Status Quo and Issues Identification Msunduzi Municipality is located at the centre of the uMgungundlovu District Municipality. It covers 640 square kilometres and is located 80 km from Durban along the N3. Pietermaritzburg (the Districts main economic hub) is situated within the basin of the uMsunduzi River and its tributaries and the hills around the city bowl tend to create a distinction between the urban and rural parts of the municipality. The topography provides an urban/rural boundary and also contributes to the creation of an atmospheric inversion layer on clear winter nights that traps pollutants within the city bowl. This results in a high ambient concentration of air pollutants even though Msunduzi has relatively few emitting industries. eman 376998_ Final Draft SEA Report_May2010 May 2010 SRK Consulting Msunduzi Final Draft SEA Page iii Soils within the Municipality vary greatly. The topography, rainfall patterns and geology has resulted in the high agricultural potential of the area. However large portions of highly productive agricultural land have been developed for other uses such as housing. The topography, geology and other land characteristics in Msunduzi have also given rise to diverse habitats and species richness. High levels of transformation have resulted in a significant loss of natural habitat and a relatively low proportion of the municipality is regarded as “untransformed”. The majority of identified biodiversity targets can, however, still be met. Msunduzi Municipality constitutes almost entirely one catchment area which assists in catchment management. This does imply that any adverse impact within the catchment may affect the entire municipal area. Water quality varies from catchment to catchment basin but the main impact on the city is evident in the decrease in water quality that occurs as it passes from the semi rural through the urbanised portions of the municipality. The decrease in water quality compromises development opportunities and the hosting of tourism events within the municipality such as the Duzi Canoe Marathon. Wetlands provide a number of ecosystem goods and services critical for the realisation of social and economic development goals, however, the extent of wetlands within Msunduzi has declined significantly, particularly in the developed areas. The wetlands have generally been transformed and most of the remaining wetlands are degraded. Msunduzi is characterised by a complex racial mix and currently reflects a typical South Africa city divided both by income and by race. Population growth in Msunduzi is higher than the national average, as a result of urbanisation. High population growth is one of the major contributing factors to biophysical and socio economic issues within the Municipality. The demand for services results in risks to the aquatic and terrestrial environment while traffic congestion results in impacts on air quality. Recorded cultural heritage sites consist mainly of European sites, while African, Coloured and Indian cultural heritage sites have yet to be identified and recorded, and are therefore at risk of being lost. Msunduzi’s location on the N3 between Durban and Johannesburg together with its declaration as the administrative capital means that the municipality is subject to development pressure while this equally presents significant development opportunities. The ecosystems goods and services provided by the environment are critical to realising these development opportunities. As the loss of goods and services will compromise potential development opportunities, it is critical to ensure that development keeps within the capacity of the environment to provide the necessary good and services. The total area for which Msunduzi has jurisdiction increased dramatically with the creation of wall to wall municipalities. The capacity within the municipality has not however increased proportionately to deal with this greater responsibility. The municipality has also lost key staff with extensive experience; and, if and when replaced, new staff often lack the requisite experience. This has resulted in an overall and significant decrease in the municipality’s capacity for environmental governance. There is a perception that the environment is not rated as a high priority by Council. This perception is however difficult to confirm. There is also a general lack of understanding within sectors of the municipality as to environmental issues and particularly the implications of the environmental degradation aspects that have been detailed above. eman 376998_ Final Draft SEA Report_May2010 May 2010 SRK Consulting Msunduzi Final Draft SEA Page iv Weak environmental governance will inevitably lead to further environmental degradation and exacerbate the risks that have been identified in the various themes of this strategic assessment. Inappropriate land use; uncontrolled emissions; and pollution and environmental degradation, compromise the ability of the environment to support socio-economic development. Ecosystem goods and services that are vital for the health and well being of the municipal residents are compromised. There is therefore a direct link between strong environmental governance and management and the realisation of sustainable social and economic development goals. Further the loss of ecosystem goods and services will result in significant cost implications for the municipality. This is demonstrated by the unplanned and possibly wasteful expenditure incurred to rehabilitate environmental damage that should have been prevented through strong environmental governance and informed decision making at an early stage. Sustainability Framework and Appraisal of the SDF To address the key issues a desired state of the environment was developed through extensive public consultation and the review of applicable legislation, policy and guidelines. The desired state of the environment provides a sustainability framework against which the municipality can assess the sustainability of any plan, program or policy. The sustainability framework includes an indication of the limits of acceptable change set down in legislation, policy and guidelines. Through a public participation process the values of the Msunduzi residents were identified. Questionnaires administered to all interested affected parties( IAP’s); and, the existing Msunduzi Integrated Environmental Management (IEM) Policy was used as a basis for this discussion. Based on the input obtained through the above process a set of sustainability criteria was identified. These are presented in Table 1. Table 1: Sustainability Criteria Biophysical 1. Degraded areas are identified and rehabilitated to limit soil erosion and promote land productivity 2. Aquatic ecosystems are in a healthy state to ensure that the resource remains fit for all other uses and minimum water quality targets are maintained 3. Areas of high biological diversity, are utilised and managed to promote the ecosystem goods and services they supply 4. Alien invasive species are controlled and managed to prevent further infestation 5. Wetland areas, streams and rivers are preserved, rehabilitated and managed to maintain ecological function 6. Flood prone areas are managed to promote ecosystem goods and services and minimise flood
Recommended publications
  • Bayne' Spruit Rehabilitation Project
    BAYNE’ SPRUIT REHABILITATION PROJECT Reclaiming valuable water resources in the Msunduzi Local Municipality for people, business and recreation Background The Bayne’s Spruit is a relatively small tributary of the Msunduzi River. It has its headwaters in the residential area of Northdale and flows about 9 km through the Willowton Industrial Area before joining the Msunduzi River just east of the residential suburb of Sobantu. It is part of the Pietermaritzburg urban catchment but its water flows from the Msunduzi into the uMngeni River and the Inanda Dam, Durban’s primary water supply. Water from the Msunduzi River is extracted for irrigation purposes, but it is better known as the starting point of the famous annual Duzi Canoe Marathon. The Bayne’s Spruit has served historically as a valuable resource to the Sobantu community for fishing, swimming and irrigation purposes. Challenges The Bayne’s Spruit has high density formal residential development in its upper catchment, a concentration of trade effluent regulated industries in the middle reaches, and informal settlements and high density formal residential areas downstream. Some natural areas within the Bayne’s Spruit riparian corridor remain intact but the majority are degraded and poorly maintained. The Bayne’s Spruit has been subjected to illegal discharges of industrial effluent, illegal dumping and extensive littering by those living along its banks. This pollution is exacerbated by poor storm water and sanitation infrastructure due to pipe misalignments, root intrusions, silt deposits, and the inappropriate disposal of litter and refuse through the sewer network. Escherichia coli (commonly known as E. coli) levels in this stream are consistently high (reaching 141 400 E.coli/100ml in January 2012 – more than 1000x recommended levels) and the Bayne’s Spruit is rated amongst the worst and most polluted streams in South Africa.
    [Show full text]
  • Mgeni Ca~Ent
    I 824 AKW9~~~~ ~Cibrary IRC IntentIori~I~w~ter and S~nIt~tftj~~ntrg i:~i 10 30 GA~80 MGENI Fa)c ~31 10 1~$~ CA~ENT MANAGEMENT PLAN APiamework for anIntegrated Water Management Plan for the Mgefli Catchment UMGENI —~--- Department of Water Affairs and Forestry I 824—ZAKW—15249 WATER AMANZI ‘4 -- The management of water in any country is a major undertaking. Its J management in a semi-arid, semi-industrialised, multi-cultural country where more than 12 million people do not have access to an adequate supply of potable wate~~becomes a daunting task. In order to accomplish this task myDepartment has, as the custodian of The nation’s waterresources, and in concurrence with international trends, decided to manage this strategic resource on a river basin or catchment basis. Such an integrated catchment management approach which allows water and associated landresources to be managed in such a way that the waterremains fit for use for the various present and future users and the health of the water environment is a principle for the development of the new Water Law for The country. According to this prThciple, the responsibility for the development, apportionment and management of the available water resources are delegated, where possible, to a catchment level. Integral to this approach, various opportunities are provided for The users of water and the impacters on The water resources, to participate in, and contribute to, decision making processes on water resources. This document is a product of the firstphase of ajoint project between my Department and Umgenl Water for the management of The Mgeni Catchment.
    [Show full text]
  • Investigating the Occurrence and Survival of Vibrio Cholerae in Selected Surface Water Sources in the Kwazulu-Natal Province of South Africa
    Investigating the occurrence and survival of Vibrio cholerae in selected surface water sources in the KwaZulu-Natal province of South Africa Report to the Water Research Commission Prepared by VM Ntema1, N Potgieter 2, GN van Blerk3 and TG Barnard 1 1University of Johannesburg 2University of Venda 3East Rand Water Care Company July 2014 ISBN No. 978-1-4312-0558-5 Report No. 2168/1/14 Water Research Commission Private Bag X03 Gezina, 0031 [email protected] or download from www.wrc.org.za DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. © Water Research Commission Vibrio cholerae from river water ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ EXECUTIVE SUMMARY ______________________________________________________________________________________ In the rural communities of developing countries like South Africa, rivers play a pivotal role in the life of the population for social, cultural and religious reasons. The population in these communities is exposed to prevailing poor quality of river water, which may result in people contracting waterborne disease such as cholera. Cholera is an intestinal disease caused by the bacterium Vibrio cholerae, which colonises the human intestine and causes severe diarrhea, which may be fatal if not diagnosed or treated early. The transmission of the disease is mediated by water, with two main routes of transmission for cholera being reported in the literature. The primary transmission occurs from a natural reservoir of pathogens in the aquatic environment to the human host.
    [Show full text]
  • Gazette • Provinsiale Koerant • Igazethi Yesifundazwe
    KWAZULU-NATAL PROVINCE KWAZULU-NATAL PROVINSIE ISIFUNDAZWE SAKWAZULU-NATALI Provincial Gazette • Provinsiale Koerant • Igazethi Yesifundazwe (Registered at the post office as a newspaper) • (As ’n nuusblad by die poskantoor geregistreer) (Irejistiwee njengephephandaba eposihhovisi) PIETERMARITZBURG Vol. 11 30 MARCH 2017 No. 1807 30 MAART 2017 30 KUNDASA 2017 PART 1 OF 3 We oil Irawm he power to pment kiIDc AIDS HElPl1NE 0800 012 322 DEPARTMENT OF HEALTH Prevention is the cure ISSN 1994-4558 N.B. The Government Printing Works will 01807 not be held responsible for the quality of “Hard Copies” or “Electronic Files” submitted for publication purposes 9 771994 455008 2 No. 1807 PROVINCIAL GAZETTE, 30 MARCH 2017 IMPORTANT NOTICE: THE GOVERNMENT PRINTING WORKS WILL NOT BE HELD RESPONSIBLE FOR ANY ERRORS THAT MIGHT OCCUR DUE TO THE SUBMISSION OF INCOMPLETE / INCORRECT / ILLEGIBLE COPY. NO FUTURE QUERIES WILL BE HANDLED IN CONNECTION WITH THE ABOVE. CONTENTS Gazette Page No. No. PROVINCIAL NOTICES • PROVINSIALE KENNISGEWINGS 35 Local Government: Municipal Systems Act (32/2000): Notice in terms of section 14(2)(a) of the Act: Publication of Standard Draft By-laws ................................................................................................................................... 1807 11 15 Road Carrier Permits: KwaZulu-Natal ................................................................................................................ 1807 168 MUNICIPAL NOTICES • MUNISIPALE KENNISGEWINGS 33 Municipal Property Rates Act (6/2004):
    [Show full text]
  • Volume 2: Mgeni System
    Infrastructure Master Plan 2019 2019/2020 – 2049/2050 Volume 2: Mgeni System Infrastructure Development Division, Umgeni Water 310 Burger Street, Pietermaritzburg, 3201, Republic of South Africa P.O. Box 9, Pietermaritzburg, 3200, Republic of South Africa Tel: +27 (33) 341 1111 / Fax +27 (33) 341 1167 / Toll free: 0800 331 820 Email: [email protected] / Web: www.umgeni.co.za For further information, please contact: Planning Services Infrastructure Development Division Umgeni Water P.O.Box 9, Pietermaritzburg, 3200 KwaZulu‐Natal, South Africa Tel: 033 341‐1522 Fax: 033 341‐1218 Email: [email protected] Web: www.umgeni.co.za UMGENI WATER INFRASTRUCTURE MASTER PLAN 2019 2019/ 2020 – 2049/ 20 50 M AY 2019 PREFACE This Infrastructure Master Plan 2019 describes Umgeni Water’s infrastructure plans for the financial period 2019/2020 – 2049/2050. It is a comprehensive technical report that provides detailed information on the organisation’s current infrastructure and on its future infrastructure development plans. This report replaces the last comprehensive Infrastructure Master Plan that was compiled in 2018. The report is divided into seven volumes summarised in Table i and shown schematically in Figure i. Table i Umgeni Water Infrastructure Master Plan 2019/2020 volumes. Focus Area Purpose Volume 1 describes the most recent changes and trends within the primary environmental dictates that influence Umgeni Water’s infrastructure development plans (Section 2). Section 3 provides a review of historic water sales against past projections, as well as Umgeni Water’s most recent water demand projections, compiled at the end of 2017. Section 4 describes Water Demand Management initiatives that are being undertaken by the utility and Section 5 contains a high level review of the energy consumption used to produce the water volumes analysed in Section 3.
    [Show full text]
  • Assessing the Distribution of Sedimentary Heavy Metals in the Msunduzi River Catchment, Kwazulu- Natal, South Africa
    ASSESSING THE DISTRIBUTION OF SEDIMENTARY HEAVY METALS IN THE MSUNDUZI RIVER CATCHMENT, KWAZULU- NATAL, SOUTH AFRICA by Mendy Shozi MSc Submitted in fulfilment of the academic requirements for the degree of Master of Science in Environmental Sciences, in the School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Durban, South Africa. February 2015 NOTE: This thesis has been prepared according to Format 3 as outlined in the guidelines from the College of Agriculture, Engineering and Science which states: This is a thesis in which the chapters are written as a set of discrete research papers, with an Overall Introduction and a Final Conclusion. These research papers would not be published yet. The references are reformatted to a uniform standard. As the candidate’s supervisors, we have approved this thesis for submission. Signed: Name: Dr J. Finch Date: Signed: Name: Dr L. Pillay Date: ABSTRACT Heavy metal pollution of freshwater environments is a global and local crisis due to the toxic nature of metals. Elevated concentrations of heavy metals in sediments, in comparison to sediment quality guidelines (SQGs), are an indication of anthropogenic input into the environment. Concentrations of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) were investigated in the water and sediments of Msunduzi River and two of its tributaries, the Bayne’s Spruit and Slangspruit, in KwaZulu-Natal, South Africa. Macro-elements, aluminium (Al), iron (Fe) and manganese (Mn) were also investigated and compared to the distribution and partitioning pattern of the trace metal concentrations. Total metal concentrations in the water samples were below the detection limit of the Inductively Coupled Plasma– Optical Emission Spectrometry (ICP-OES) for most metals.
    [Show full text]
  • WATER for GROWTH and SUSTAINABLE DEVELOPMENT Vision Leading Water Utility That Enhances Value in the Provision of Bulk Water and Sanitation Services
    ANNUAL REPORT 2O12/2O13 UMGENI WATER • AMANZI WATER UMGENI www.umgeni.co.za ANNUAL REPORT ANNUAL 2O12/2O13 WATER FOR GROWTH AND SUSTAINABLE DEVELOPMENT Vision Leading water utility that enhances value in the provision of bulk water and sanitation services We will be known in the water sector as an effectively run, public-oriented and socially accountable organisation, which has its heart and mind, focused on the provision of bulk water services. We will achieve leadership based on our performance and the sustainable value we co-create with our customers and stakeholders and continue to leave a positive legacy in our communities, region and country. Mission Provide innovative, sustainable, effective and affordable bulk water and sanitation services Our business is the provision of bulk water services – both potable and wastewater - to support government services delivery to the people of South Africa and providing water for life. This includes providing all bulk water services to our customers, facilitating integrated planning in the region, supporting municipalities and contributing to water knowledge that will lead to sustainability from source-tap-source. Strategic Intent Key Partner that enables government to deliver effective and efficient bulk water and sanitation services Umgeni Water wants to be recognised as a strategic and sustainable partner of government, co-creating value through providing bulk water and sanitation services as a catalyst for local economic development and government’s developmental agenda. We will provide water services for health and economic benefi ts that contribute to addressing poverty, under-development and inequality. This report is printed on Magno Satin. Magno is a wood free, acid free totally chlorine free triple blade coated paper, manufacture at FSCTM rated mills.
    [Show full text]
  • A Case Study of Msunduzi Municipality, South Africa
    URBAN OPEN SPACE: A CASE STUDY OF MSUNDUZI MUNICIPALITY, SOUTH AFRICA by Colleen Marianne Sutton A thesis submitted to the School of Environmental Studies In conformity with the requirements for the degree of Master’s of Environmental Studies Queen’s University Kingston, Ontario, Canada (August, 2008) Copyright ©Colleen Marianne Sutton, 2008 ISBN 978-0-494-44523-5 Abstract Increasingly, it is understood that in order to realize healthy cities the urban environment must include viable and accessible open space. In order for urban planning and development agencies to ensure the presence of open space within cities, it is necessary to understand what constitutes ‘quality’ open space and the impediments to its creation. The focus of this thesis is to further understand the issues surrounding planning and management of open space in the Msunduzi Municipality in the province of KwaZulu-Natal, South Africa. A case study of the Camps Drift Waterfront Project, a local open space area that is currently being developed, is investigated through both key informant interviews with relevant stakeholders and through a comprehensive survey of written information. The thesis reveals a further understanding of how open space is planned locally, the issues surrounding creating quality and accessible open space and the key areas for further research. Finally, this thesis highlights how the case study of Msunduzi can broaden the debates and concepts in open space theory and planning. ii Acknowledgements This research could not have been completed without the many people who directly and indirectly supported and helped me throughout the past two years. First and foremost, I would like to thank my supervisor, Dr.
    [Show full text]
  • Genomic Insights of Multidrug-Resistant Escherichia Coli from Wastewater Sources and Their Association with Clinical Pathogens in South Africa
    ORIGINAL RESEARCH published: 26 February 2021 doi: 10.3389/fvets.2021.636715 Genomic Insights of Multidrug-Resistant Escherichia coli From Wastewater Sources and Their Association With Clinical Pathogens in South Africa Joshua Mbanga 1,2*, Daniel G. Amoako 1,3, Akebe L. K. Abia 1, Mushal Allam 3, Arshad Ismail 3 and Sabiha Y. Essack 1 1 Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa, 2 Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe, 3 Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa There is limited information on the comparative genomic diversity of antibiotic-resistant Escherichia coli from wastewater. We sought to characterize environmental E. coli Edited by: isolates belonging to various pathotypes obtained from a wastewater treatment plant Alain Hartmann, (WWTP) and its receiving waters using whole-genome sequencing (WGS) and an array Institut National de Recherche pour of bioinformatics tools to elucidate the resistomes, virulomes, mobilomes, clonality, l’agriculture, l’alimentation et l’environnement (INRAE), France and phylogenies. Twelve multidrug-resistant (MDR) diarrheagenic E. coli isolates were Reviewed by: obtained from the final effluent of a WWTP, and the receiving river upstream and Faham Khamesipour, downstream of the WWTP were sequenced on an Illumina MiSeq machine. The Shahid Beheshti University of Medical Sciences, Iran multilocus sequence typing (MLST) analysis revealed that multiple sequence types (STs), David Smith, the most common of which was ST69 (n = 4) and ST10 (n = 2), followed by singletons Heriot-Watt University, belonging to ST372, ST101, ST569, ST218, and ST200.
    [Show full text]
  • The DUCT Story 2005–2013 5 Directors and Management Team
    The Duzi-uMngeni Conservation Trust (DUCT) is a non-profit public benefit organisation founded for the express purpose of championing the health of the uMsunduzi and uMngeni Rivers in KwaZulu-Natal. For the past eight years DUCT has worked on: The DUCT Story ¢ Improving water quality through lobbying for improvements to the sewage infrastructure and the operation and maintenance of that infrastructure in Pietermaritzburg and Durban; 2005–2013 ¢ Reducing solid waste in the rivers by lobbying for better waste management and by collecting and removing much of the waste that ends up in the rivers; ¢ Reducing industrial pollution by providing an early warning system and assisting with monitoring; ¢ Removing and controlling invasive alien vegetation both terrestrial and aquatic, using physical, chemical and biological control methods; ¢ Increasing flow in rivers through lobbying for the implementation of the environmental flow provisions in the Water Act of 1998; ¢ Education and public awareness through media campaigns, training and support of community eco- champions, and long term work with eco clubs in schools; ¢ Better regulation of sand mining through building relationships with the responsible authorities, and through on the ground monitoring; ¢ Improving land care and reducing soil erosion through the training and employment of erosion control teams; ¢ Investing in valley communities with typically between 100 and 200 people employed at any one time in various aspects of DUCT’s environmental work, from alien plant control to erosion protection,
    [Show full text]
  • Uzi Spatial Development Framework Review: Consolidated Report
    MSUNDMSUNDMSUNDUZIMSUNDUZI SPATIAL DEVELOPMENT FRAMEWORK REVIEW: CONSOLIDATED REPORT JULY 2009JULY 2009 MSUNDUZI SDF REVIEW TABLE OF CONTENTS TABLE OF CONTENTS ..................................................................................................................................i EXECUTIVE SUMMARY- PREFACE ............................................................................................................v 1.0 INTRODUCTION .......................................................................................................................... - 1 - 1.1 Background ................................................................................................................................. - 1 - 1.2 Historical Context ....................................................................................................................... - 2 - 2.0 LEGISLATION AND POLICY ...................................................................................................... - 4 - 3.1 Physical Environment .............................................................................................................. - 36 - 3.2 Agriculture and Agricultural Potential ................................................................................... - 41 - 3.3 Environmental Conservation and Open Space System ....................................................... - 45 - 3.4 Social Facilities ......................................................................................................................... - 53 - 3.5 Housing
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons in Water, Soils and Surface Sediments
    ntal A me na on ly ir ti v c n a Munyengabe et al., J Environ Anal Chem 2017, 4:4 l E C f h Journal of Environmental Analytical o DOI: 10.4172/2380-2391.1000227 e l m a n i s r t u r y o J Chemistry ISSN: 2380-2391 Research Article Open Access Polycyclic Aromatic Hydrocarbons in Water, Soils and Surface Sediments of the Msunduzi River Alexis Munyengabe1*, Allen Mambanda1 and Brenda Moodley2 1School of Chemistry and Physics, Pietermaritzburg Campus, 3209, University of Kwazulu-Natal, South Africa 2School of Chemistry and Physics, Westville Campus, Durban 4000, University of Kwazulu-Natal, South Africa *Corresponding author: Alexis Munyengabe, School of Chemistry and Physics, Pietermaritzburg Campus, 3209, University of Kwazulu-Natal, South Africa, Tel: +27629832402; E-mail: [email protected] Received date: December 11, 2017; Accepted date: December 20, 2017; Published date: December 26, 2017 Copyright: © 2017 Munyengabe A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The concentration of seven Polycyclic Aromatic Hydrocarbons (PAHs) (namely Naphthalene, Acenaphthylene, Fluorene, Phenanthrene, Anthracene, Pyrene and Chrysene) were determined in 28 surface waters, 8 wastewaters, 26 soils and 26 surface sediments from the Msunduzi River, a major supply of portable water in KwaZulu-Natal (KZN) province, South Africa. Water samples were extracted using a conventional liquid-liquid extraction technique into Dichloromethane (DCM) while soils and surface sediments were extracted with an equal mixture of DCM and n- hexane using the Soxhlet extraction technique.
    [Show full text]