Transamidation of Amides and Amidation of Esters by Selective N–C(O)/O–C(O) Cleavage Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)–NHC Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Transamidation of Amides and Amidation of Esters by Selective N–C(O)/O–C(O) Cleavage Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)–NHC Complexes molecules Article Transamidation of Amides and Amidation of Esters by Selective N–C(O)/O–C(O) Cleavage Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)–NHC Complexes Jonathan Buchspies †, Md. Mahbubur Rahman † and Michal Szostak * Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; [email protected] (J.B.); [email protected] (M.M.R.) * Correspondence: [email protected]; Tel.: +1-973-353-5329 † These authors contributed equally to this work. Abstract: The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non- nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming Citation: Buchspies, J.; Rahman, protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions. M.M.; Szostak, M. Transamidation of Amides and Amidation of Esters by Keywords: transamidation; twisted amides; NHCs; N-heterocyclic carbenes; nickel; Buchwald– Selective N–C(O)/O–C(O) Cleavage Hartwig; amidation; cyclopentadienyl; nickel–NHCs; amide bonds; N–C activation; [CpNi(NHC)X] Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)–NHC Complexes. Molecules 2021, 26, 188. https://doi.org/10.3390/molecules 1. Introduction 26010188 The amide bond represents one of the most fundamental and important functional groups in organic synthesis [1–3]. It is estimated that amide bonds are the common Academic Editor: Derek J. McPhee structural motif in more than 75% of new pharmaceuticals, while new methods for the Received: 10 December 2020 formation of amide bonds have been intensively investigated [4,5]. In this context, transami- Accepted: 24 December 2020 Published: 2 January 2021 dation reactions represent a highly attractive, unconventional method for the synthesis of amide bonds by transforming a more reactive amide bond into a new, more thermo- Publisher’s Note: MDPI stays neu- dynamically stable amide counterpart [6–10]. In recent years, the selective activation of tral with regard to jurisdictional clai- C(acyl)–N amide bonds has been achieved by the controlled metal insertion into the reso- ms in published maps and institutio- nance activated bonds in twisted amides (i.e., non-planar amides) [11–13]. This general * nal affiliations. approach circumvents the low reactivity of amides resulting from nN!π C=O conjugation (resonance of 15–20 kcal/mol in planar amides), while providing a powerful platform for organic synthesis [14,15]. Transamidation reactions of twisted amide N–C(O) bonds have been achieved using well-defined Pd(II)–NHC catalysts as well as by using air- Copyright: © 2021 by the authors. Li- sensitive Ni(cod)2 in combination with NHC ligands [16–21]. These reactions provide censee MDPI, Basel, Switzerland. a variety of novel methods for the synthesis of ubiquitous amide bonds and have been This article is an open access article extended to catalytic amidation reactions of activated phenolic and unactivated methyl distributed under the terms and con- esters by O–C(O) cleavage [22–25]. In continuation of our studies on activation of amide ditions of the Creative Commons At- bonds and organometallic catalysis, in this Special Issue of Editorial Board members of the tribution (CC BY) license (https:// Organometallic Section of Molecules, we report transamidation of N-activated amides by creativecommons.org/licenses/by/ 4.0/). selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC Molecules 2021, 26, 188. https://doi.org/10.3390/molecules26010188 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 8 Molecules 2021, 26, 188 2 of 8 N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes [26–33]. Most importantly, we demonstrate that (NHCreadily = N available-heterocyclic cyclopentadienyl carbenes) complexes complex [26–33]. extensively Most importantly, developed we demonstrate by Chetcuti, namely that[CpNi(IPr)Cl] readily available (IPr cyclopentadienyl = 1,3-bis(2,6-diisopropylphenyl)imidazol complex extensively developed by-2- Chetcuti,ylidene) namely [34–43], promotes [CpNi(IPr)Cl]highly selective (IPr = transamidation 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) of the N–C(O) bond in twisted [34– N43-],Boc promotes amides with non- highlynucleophilic selective anilines transamidation (Figure of 1). the The N–C(O) reaction bond provides in twisted access N-Boc to amides secondary with non- anilides via the nucleophilic anilines (Figure1 ). The reaction provides access to secondary anilides via the non-conventionalnon-conventional amide amide bond-forming bond-forming pathway. pathway. Furthermore, Furthermore, the amidation the ofamidation activated of activated phenolicphenolic and and unactivated unactivated methyl methyl esters esters mediated mediated by [CpNi(IPr)Cl] by [CpNi(IPr)Cl] is reported. is This reported. study This study setssets the the stage stage for thefor broad the broad utilization utilization of well-defined, of well air--defined, and moisture-stable air- and moisture Ni(II)–NHC-stable Ni(II)– complexesNHC complexes in catalytic in amidecatalytic bond-forming amide bond protocols-forming by unconventionalprotocols by unconventiona C(acyl)–N and l C(acyl)–N C(acyl)–Oand C(acyl) bond–O cleavage bond cleavage reactions. reactions. FigureFigure 1. 1.Transamidation Transamidation of N-activated of N-activated amides amides by selective by N–C(O)selective cleavage. N–C(O) cleavage. 2.2. Results Results Although we have identified well-defined Pd(II)–NHC complexes for transamida- tion reactionsAlthough of activatedwe have amides identified and esters well [-18defined–21], we Pd(II) have– beenNHC investigating complexes air- for transami- anddation moisture-stable reactions of Ni(II)–NHCs activated amides based on and naturally esters more[18–21], abundant we have Ni as been 3d transi-investigating air- tionand metal moisture [26–28-].stable We were Ni(II) attracted–NHCs to based the well-defined, on naturally air- andmore moisture-stable, abundant Ni half-as 3d transition sandwich,metal [26 cyclopentadienyl–28]. We were [CpNi(IPr)Cl] attracted to complex the well (Figure-defined,2) owing air- to and its ready moisture availability,-stable, half-sand- easewich, of handlingcyclopentadienyl and the potential [CpNi(IPr)C to preparel] morecomplex reactive (Figure cyclopentadienyl 2) owing to Ni(II)–NHC its ready availability, analogues [29–33]. Notably, [CpNi(IPr)Cl] has emerged as a highly attractive catalyst for ease of handling and the potential to prepare more reactive cyclopentadienyl Ni(II)–NHC several classes of cross-coupling reactions [29–33]; however, transamidations and amida- tionanalogues reactions [29 using–33]. this Notably, well-defined [CpNi(IPr)Cl] catalyst have has been emerged elusive. as a highly attractive catalyst for several classes of cross-coupling reactions [29–33]; however, transamidations and ami- dation reactions using this well-defined catalyst have been elusive. MoleculesMolecules 20212021, 26, 26, x, 188FOR PEER REVIEW 3 of 8 3 of 8 Molecules 2021, 26, x FOR PEER REVIEW 3 of 8 Figure 2. Structure of the air- and moisture-stable, well-defined, half-sandwich, cyclopentadienyl Figure[CpNi(IPr)Cl]Figure 2. Structure2. Structure complex. of the of air- the and air moisture-stable,- and moisture well-defined,-stable, well half-sandwich,-defined, half cyclopentadienyl-sandwich, cyclopentadienyl [CpNi(IPr)Cl][CpNi(IPr)Cl] complex. complex. We initiated our studies by evaluating the reaction conditions for the [CpNi(IPr)Cl]- catalyzedWe initiated transamidation our studies of byN-Boc evaluating activated the amide reaction 1a conditionswith 4-methoxyaniline for the [CpNi(IPr)Cl]- 2a (Table catalyzed1). Of note,We transamidation initiatedtwisted N-Boc our of amidesstudies N-Boc are activatedby readily evaluating prepared amide 1a the fromwith reaction the 4-methoxyaniline corresponding conditions 2asecondary for(Table the [CpNi(IPr)Cl]- 1amides).catalyzed Of note, by N transamidation twisted-chemoselective N-Boc amides tert of-butoxycarbonylation. N are-Boc readily activated prepared amideThe from N-carbamate 1a the with corresponding 4activation-methoxyaniline sec-per- 2a (Table ondarymits1). Of for amidesnote, decreasing twisted by N -chemoselectiveamidic N- Bocresonance amidestert (RE,-butoxycarbonylation. are resonance readily energy, prepared The7.2 kcalN from-carbamate/mol), the while corresponding activation provid- secondary permitsingamides a thermodynamic for by decreasing N-chemoselective pathway amidic resonancefor transamidatert-butoxycarbonylation. (RE,tion resonance by
Recommended publications
  • Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007
    Baran Group Meeting Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007 Ernst Otto Fischer (1918 - ) Other Types of Stabilized Carbenes: German inorganic chemist. Born in Munich Schrock carbene, named after Richard R. Schrock, is nucleophilic on November 10, 1918. Studied at Munich at the carbene carbon atom in an unpaired triplet state. Technical University and spent his career there. Became director of the inorganic Comparision of Fisher Carbene and Schrock carbene: chemistry institute in 1964. In the 1960s, discovered a metal alkylidene and alkylidyne complexes, referred to as Fischer carbenes and Fischer carbynes. Shared the Nobel Prize in Chemistry with Geoffery Wilkinson in 1973, for the pioneering work on the chemistry of organometallic compounds. Schrock carbenes are found with: Representatives: high oxidation states Isolation of first transition-metal carbene complex: CH early transition metals Ti(IV), Ta(V) 2 non pi-acceptor ligands Cp2Ta CH N Me LiMe Me 2 2 non pi-donor substituents CH3 (CO) W CO (CO)5W 5 (CO)5W A.B. Charette J. Am. Chem. Soc. 2001, 123, 11829. OMe O E. O. Fischer, A. Maasbol, Angew. Chem. Int. Ed., 1964, 3, 580. Persistent carbenes, isolated as a crystalline solid by Anthony J. Arduengo in 1991, can exist in the singlet state or the triplet state. Representative Fischer Carbenes: W(CO) Cr(CO) 5 5 Fe(CO)4 Mn(CO)2(MeCp) Co(CO)3SnPh3 Me OMe Ph Ph Ph NEt2 Ph OTiCp2Cl Me OMe Foiled carbenes were defined as "systems where stabilization is Fischer carbenes are found with : obtained by the inception of the facile reaction which is foiled by the impossibility of attaining the final product geometry".
    [Show full text]
  • N-Heterocyclic Carbenes (Nhcs)
    Baran Lab N - H e t e r o c y c l i c C a r b e n e s ( N H C s ) K. J. Eastman An Introduction to N-heterocyclic Carbenes: How viable is resonance contributer B? Prior to 1960, a school of thought that carbenes were too reactive to be smaller isolated thwarted widespread efforts to investigate carbene chemistry. base ! N N N N R R R R Perhaps true for the majority of carbenes, this proved to be an inaccurate X- assessment of the N-heterocyclic carbenes. H longer Kirmse, W. Angerw. Chem. Int. Ed. 2004, 43, 1767-1769 In the early 1960's Wanzlick (Angew. Chem. Int. Ed. 1962, 1, 75-80) first investigated the reactivity and stability of N-heterocyclic carbenes. Attractive Features of NHCs as Ligands for transition metal catalysts: Shortly thereafter, Wanzlick (Angew. Chem. Int. Ed. 1968, 7, 141-142) NHCs are electron-rich, neutral "#donor ligands (evidenced by IR frequency of reported the first application of NHCs as ligands for metal complexes. CO/metal/NHC complexes). Surprisingly, the field of of NHCs as ligands in transition metal chemistry Electron donating ability of NHCs span a very narrow range when compared to remained dormant for 23 years. phosphine ligands In 1991, a report by Arduengo and co-workers (J. Am. Chem. Soc. 1991, Electronics can be altered by changing the nature of the azole ring: 113, 361-363) on the extraodinary stability, isolation and storablility of benzimidazole<imidazole<imidazoline (order of electron donating power). crystalline NHC IAd. NHC-metal complex stability: NaH, DMSO, MeOH N N N N + H2 + NaCl NHCs form very strong bonds with the majority of metals (stronger than Cl- phosphines!) H IAd N-heterocyclic carbenes are electronically (orbital overlap) and sterically (Me vs.
    [Show full text]
  • An Investigation of N-Heterocyclic Carbene Carboxylates
    AN INVESTIGATION OF N-HETEROCYCLIC CARBENE CARBOXYLATES: INSIGHT INTO DECARBOXYLATION, A TRANSCARBOXYLATION REACTION, AND SYNTHESIS OF HYDROGEN BONDING PRECURSORS by Bret Ryan Van Ausdall A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry The University of Utah May 2012 Copyright © Bret Ryan Van Ausdall 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Bret Ryan Van Ausdall has been approved by the following supervisory committee members: Janis Louie , Chair 7-8-2011 Date Approved Cynthia Burrows , Member 7-8-2011 Date Approved Thomas Richmond , Member 7-8-2011 Date Approved Matthew S. Sigman , Member 7-8-2011 Date Approved Debra Mascaro , Member 7-8-2011 Date Approved and by Henry S. White , Chair of the Department of Chemistry and by Charles A. Wight, Dean of The Graduate School. ABSTRACT A series of 1,3-disubstituted-2-imidazolium carboxylates, an adduct of CO2 and N-heterocyclic carbenes, was synthesized and characterized using single crystal X-ray, thermogravimetric, IR, and NMR analysis. The TGA analysis of the imidazolium carboxylates shows that as steric bulk on the N-substituent increases, the ability of the NHC-CO2 to decarboxylate increases. Single crystal X-ray analysis shows that the torsional angle of the carboxylate group and the C-CO2 bond length with respect to the imidazolium ring is dependent on the steric bulk of the N-substituent. Rotamers in the t unit cell of a single crystal of I BuPrCO2 (2f) indicate that the C-CO2 bond length increases as the N-substituents rotate toward the carboxylate moiety, which suggests that rotation of the N-substituents through the plane of the C-CO2 bond may be involved in the bond breaking event to release CO2.
    [Show full text]
  • The Chemistry of Carbene-Stabilized
    THE CHEMISTRY OF CARBENE-STABILIZED MAIN GROUP DIATOMIC ALLOTROPES by MARIHAM ABRAHAM (Under the Direction of Gregory H. Robinson) ABSTRACT The syntheses and molecular structures of carbene-stabilized arsenic derivatives of 1 1 i 1 1 AsCl3 (L :AsCl3 (1); L : = :C{N(2,6- Pr2C6H3)CH}2), and As2 (L :As–As:L (2)), are presented herein. The potassium graphite reduction of 1 afforded the carbene-stabilized diarsenic complex, 2. Notably, compound 2 is the first Lewis base stabilized diatomic molecule of the Group 13–15 elements, in the formal oxidation state of zero, in the fourth period or lower of the Periodic Table. Compound 2 contains one As–As σ-bond and two lone pairs of electrons on each arsenic atom. In an effort to study the chemistry of the electron-rich compound 2, it was combined with an electron-deficient Lewis acid, GaCl3. The addition of two equivalents of GaCl3 to 2 resulted in one-electron oxidation of 2 to 1 1 •+ – •+ – give [L :As As:L ] [GaCl4] (6 [GaCl4] ). Conversely, the addition of four equivalents of GaCl3 to 2 resulted in two- electron oxidation of 2 to give 1 1 2+ – 2+ – •+ [L :As=As:L ] [GaCl4 ]2 (6 [GaCl4 ]2). Strikingly, 6 represents the first arsenic radical to be structurally characterized in the solid state. The research project also explored the reactivity of carbene-stabilized disilicon, (L1:Si=Si:L1 (7)), with borane. The reaction of 7 with BH3·THF afforded two unique compounds: one containing a parent silylene (:SiH2) unit (8), and another containing a three-membered silylene ring (9).
    [Show full text]
  • Photochemical Generation of Carbenes and Ketenes from Phenanthrene-Based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene
    Colby College Digital Commons @ Colby Honors Theses Student Research 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene Tarini S. Hardikar Student Tarini Hardikar Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Organic Chemistry Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Hardikar, Tarini S. and Hardikar, Tarini, "Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene" (2017). Honors Theses. Paper 948. https://digitalcommons.colby.edu/honorstheses/948 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR A Thesis Presented to the Department of Chemistry, Colby College, Waterville, ME In Partial Fulfillment of the Requirements for Graduation With Honors in Chemistry SUBMITTED MAY 2017 Photochemical Generation of Carbenes and Ketenes from Phenanthrene-based Precursors Part I: Dimethylalkylidene Part II: Diphenylketene TARINI HARDIKAR Approved: (Mentor: Dasan M. Thamattoor, Professor of Chemistry) (Reader: Rebecca R. Conry, Associate Professor of Chemistry) “NOW WE KNOW” - Dasan M. Thamattoor Vitae Tarini Shekhar Hardikar was born in Vadodara, Gujarat, India in 1996. She graduated from the S.N.
    [Show full text]
  • Carbene Metal Amide Photoemitters: Tailoring Conformationally Flexible Amides for Full Color Range Emissions Including White-Emi
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Carbene metal amide photoemitters: tailoring conformationally flexible amides for full color Cite this: Chem. Sci., 2020, 11,435 † All publication charges for this article range emissions including white-emitting OLED have been paid for by the Royal Society a b b of Chemistry Alexander S. Romanov, * Saul T. E. Jones, Qinying Gu, Patrick J. Conaghan, b Bluebell H. Drummond, b Jiale Feng, b Florian Chotard, a Leonardo Buizza, b Morgan Foley, b Mikko Linnolahti, *c Dan Credgington *b and Manfred Bochmann *a Conformationally flexible “Carbene–Metal–Amide” (CMA) complexes of copper and gold have been developed based on a combination of sterically hindered cyclic (alkyl)(amino)carbene (CAAC) and 6- and 7-ring heterocyclic amide ligands. These complexes show photoemissions across the visible spectrum with PL quantum yields of up to 89% in solution and 83% in host-guest films. Single crystal X-ray diffraction and photoluminescence (PL) studies combined with DFT calculations indicate the important Creative Commons Attribution 3.0 Unported Licence. role of ring structure and conformational flexibility of the amide ligands. Time-resolved PL shows efficient delayed emission with sub-microsecond to microsecond excited state lifetimes at room Received 12th September 2019 À temperature, with radiative rates exceeding 106 s 1. Yellow organic light-emitting diodes (OLEDs) based Accepted 12th November 2019 on a 7-ring gold amide were fabricated by thermal vapor deposition, while the sky-blue to warm-white DOI: 10.1039/c9sc04589a mechanochromic behavior of the gold phenothiazine-5,5-dioxide complex enabled fabrication of the rsc.li/chemical-science first CMA-based white light-emitting OLED.
    [Show full text]
  • On the Road to Carbene and Carbyne Complexes
    ON THE ROAD TO CARBENE AND CARBYNE COMPLEXES Nobel Lecture, 11 December 1973 by ERNST OTTO FISCHER Inorganic Chemistry Laboratory, Technical University, Munich, Federal Republic of Germany Translation from the German text INTRODUCTION In the year 1960, I had the honour of giving a talk at this university* about sandwich complexes on which we were working at that time. I think I do not have to repeat the results of those investigations today. I would like to talk instead about a field of research in which we have been intensely interested in recent years: namely, the field of carbene complexes and, more recently, carbyne complexes. If we substitute one of the hydrogen atoms in a hydrocarbon of the alkane type - for example, ethane - by a metal atom, which can of course bind many more ligands, we arrive at an organometallic compound in which the organic radical is bound to the metal atom by a σ-bond (Fig. la). The earliest compounds of this kind were prepared more than a hundred years ago; the first was cacodyl, prepared by R. Bunsen (1), and then zinc dialkyls were prepared by E. Frankland (2). Later V. Grignard was able to synthesise alkyl magnesium halides by treating magnesium with alkyl halides (3). Grignard was awarded the Nobel Prize in 1912 for this effort. We may further recall the organo-aluminium compounds (4) of K. Ziegler which form the basis for the low pressure polymerisation, for example of ethylene. Ziegler and G. Natta were together honoured with the Nobel Prize in 1963 for their work on organometallic compounds.
    [Show full text]
  • Carbene Rearrangements: Intramolecular Interaction of a Triple Bond with a Carbene Center
    An Abstract OF THE THESIS OF Jose C. Danino for the degree of Doctor of Philosophy in Chemistry presented on _Dcc, Title: Carbene RearrangementE) Intramolecular Interaction of a Triple Bond with aCarbene Center Redacted for Privacy Abstract approved: Dr. Vetere. Freeman The tosylhydrazones of2-heptanone, 4,4-dimethy1-2- heptanone, 6-heptyn-2-one and 4,4-dimethy1-6-heptyn-2- one were synthesizedand decomposed under a varietyof reaction conditions:' drylithium and sodium salt pyrolyses, sodium methoxide thermolysesin diglyme and photolyses of the lithium salt intetrahydrofuran. The saturated ana- logues 2-heptanone tosylhydrazoneand its 4,4-dimethyl isomer afforded the alkenesarising from 6-hydrogeninser- product distribution in the tion. It was determined that differ- dry salt pyrolyses of2-heptanone tosylhydrazone was ent for the lithiumand the sodium salts. However, the product distribution of thedry sodium salt was verysimilar diglyme to product distributionobtained on thermolysis in explained by a with sodium methoxide. This difference was reaction of lithium bromide(present as an impurity inall compound to the lithium salts)with the intermediate diazo afford an organolithiumintermediate that behaves in a some- what different fashionthan the free carbene.The unsaturated analogues were found to produce a cyclic product in addition to the expected acyclic alkenes arising from 3-hydrogen insertion. By comparison of the acyclic alkene distri- bution obtained in the saturated analogues with those in the unsaturated analogues, it was concluded that at leastsome cyclization was occurring via addition of the diazo moiety to the triple bond. It was determined that the organo- lithium intermediateresulting from lithium bromide cat- alyzed decomposition of the diazo compound was incapable of cyclization.
    [Show full text]
  • And Copper–N-Heterocyclic Carbene-Catalyzed C H
    Copper- and copper–N-heterocyclic carbene-catalyzed C─H activating carboxylation of terminal alkynes with CO2 at ambient conditions Dingyi Yu and Yugen Zhang1 Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore Edited by Jack Halpern, University of Chicago, Chicago, IL, and approved October 4, 2010 (received for review July 26, 2010) The use of carbon dioxide as a renewable and environmentally or an excess amount of organometallic reagents for transmetalla- friendly source of carbon in organic synthesis is a highly attractive tion processes. An alternative possibility to achieve the catalytic approach, but its real world applications remain a great challenge. synthesis of carboxylic acid from CO2 is by direct C─H bond ac- The major obstacles for commercialization of most current proto- tivation and carboxylation. Very recently, Nolan’s group reported cols are their low catalytic performances, harsh reaction conditions, a gold-catalyzed CO2 carboxylation of C─H bonds of highly and limited substrate scope. It is important to develop new reac- activated arenes and heterocycles (32). Herein, we reported a tions and new protocols for CO2 transformations at mild conditions copper- and copper–N-heterocyclic carbene (NHC)-catalyzed and in cost-efficient ways. Herein, a copper-catalyzed and copper– transformation of CO2 to carboxylic acid through C─H bond ac- N -heterocyclic carbene-cocatalyzed transformation of CO2 to car- tivation and carboxylation of terminal alkynes. Various propiolic boxylic acids via C─H bond activation of terminal alkynes with acids were synthesized in good to excellent yields under ambient or without base additives is reported.
    [Show full text]
  • A Benchtop Method for Appending Protic Functional Groups to N‐Heterocyclic Carbene Protected Gold Nanoparticles
    Angewandte Research Articles Chemie International Edition:DOI:10.1002/anie.202001440 Surface Functionalization German Edition:DOI:10.1002/ange.202001440 ABenchtop Method for Appending Protic Functional Groups to N-Heterocyclic Carbene Protected Gold Nanoparticles Joseph F. DeJesus+,Lindy M. Sherman+,Darius J. Yohannan, Jeffrey C. Becca, ShelbyL.Strausser,LeonhardF.P.Karger,Lasse Jensen, David M. Jenkins,* and JonP.Camden* Abstract: The remarkable resilience of N-heterocyclic carbene NHC–CO2 adducts or NHC bicarbonate salts are the most (NHC) gold bonds has quickly made NHCs the ligand of common method for coating noble metal surfaces;[1a, 4,5] choice when functionalizing gold surfaces.Despite rapid however, adding NHCs to nanoparticles in aqueous solutions progress using deposition from free or CO2-protected NHCs, is more challenging.Two complementary approaches for synthetic challenges hinder the functionalization of NHC NHC-protected nanoparticles have been developed. Thefree surfaces with protic functional groups,such as alcohols and NHCs can be added directly to preformed nanoparticles[6] or amines,particularly on larger nanoparticles.Here,wesynthe- gold NHC complexes can be reduced with borohydrides or sizeNHC-functionalized gold surfaces from gold(I) NHC boranes,forming NHC-functionalized gold nanoparticles complexes and aqueous nanoparticles without the need for (AuNPs) under 10 nm in diameter (Figure 1a).[7] Yet, many additional reagents,enabling otherwise difficult functional applications require larger nanoparticles than can be formed groups to be appended to the carbene.The resilience of the with these methods.For example,invivo biological imaging NHC Au bond allows for multi-step post-synthetic modifica- À tion. Beginning with the nitro-NHC,weform an amine-NHC terminated surface,whichfurther undergoes amide coupling with carboxylic acids.The simplicity of this approach, its compatibility with aqueous nanoparticle solutions,and its ability to yield protic functionality,greatly expands the potential of NHC-functionalized noble metal surfaces.
    [Show full text]
  • N-Heterocyclic Carbene Complexes As Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase
    molecules Article Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase Hilke Burmeister 1, Pascal Dietze 2, Lutz Preu 1 , Julia E. Bandow 2 and Ingo Ott 1,* 1 Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany; [email protected] (H.B.); [email protected] (L.P.) 2 Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; [email protected] (P.D.); [email protected] (J.E.B.) * Correspondence: [email protected] Abstract: A series of ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands of the general type (arene)(NHC)Ru(II)X2 (where X = halide) was prepared, characterized, and evaluated as antibacterial agents in comparison to the respective metal free benzimidazolium cations. The ruthenium(II) NHC complexes generally triggered stronger bacterial growth inhibition than the metal free benzimidazolium cations. The effects were much stronger against Gram-positive bacte- ria (Bacillus subtilis and Staphylococcus aureus) than against Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa), and all complexes were inactive against the fun- gus Candida albicans. Moderate inhibition of bacterial thioredoxin reductase was confirmed for Citation: Burmeister, H.; Dietze, P.; Preu, L.; Bandow, J.E.; Ott, I. selected complexes, indicating that inhibition of this enzyme might be a contributing factor to the Evaluation of Ruthenium(II) antibacterial effects. N-Heterocyclic Carbene Complexes as Antibacterial Agents and Keywords: antibacterial; N-heterocyclic carbenes; ruthenium; thioredoxin reductase Inhibitors of Bacterial Thioredoxin Reductase. Molecules 2021, 26, 4282.
    [Show full text]
  • Transmetalation from Magnesium–Nhcs—Convenient Synthesis of Chelating -Acidic NHC Complexes
    inorganics Article Transmetalation from Magnesium–NHCs—Convenient Synthesis of Chelating π-Acidic NHC Complexes Julian Messelberger 1, Annette Grünwald 1, Philipp Stegner 2, Laura Senft 3, Frank W. Heinemann 1 and Dominik Munz 1,* 1 Lehrstuhl für Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany; [email protected] (J.M.); [email protected] (A.G.); [email protected] (F.W.H.) 2 Lehrstuhl für Anorganische und Metallorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany; [email protected] 3 Lehrstuhl für Bioanorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-9131-85-27464 Received: 6 May 2019; Accepted: 19 May 2019; Published: 22 May 2019 Abstract: The synthesis of chelating N-heterocyclic carbene (NHC) complexes with considerable π-acceptor properties can be a challenging task. This is due to the dimerization of free carbene ligands, the moisture sensitivity of reaction intermediates or reagents, and challenges associated with the workup procedure. Herein, we report a general route using transmetalation from magnesium–NHCs. Notably, this route gives access to transition-metal complexes in quantitative conversion without the formation of byproducts. It therefore produces transition-metal complexes outperforming the conventional routes based on free or lithium-coordinated carbene, silver complexes, or in situ metalation in dimethyl sulfoxide (DMSO). We therefore propose transmetalation from magnesium–NHCs as a convenient and general route to obtain NHC complexes. Keywords: NHC; transmetalation; magnesium; palladium; carbene 1. Introduction N-heterocyclic carbene (NHC) ligands have become the powerhouse of modern transition metal chemistry [1–13].
    [Show full text]