The Ovipositing Female of Ooencyrtus Telenomicida Relies on Physiological Mechanisms to Mediate Intrinsic Competition with Trissolcus Basalis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Native and Non-Native Egg Parasitoids Associated with Brown Marmorated Stink Bug (Halyomorpha Halys [Stål, 1855]; Hemiptera: Pentatomidae) in Western Slovenia
insects Article Native and Non-Native Egg Parasitoids Associated with Brown Marmorated Stink Bug (Halyomorpha halys [Stål, 1855]; Hemiptera: Pentatomidae) in Western Slovenia Mojca Rot 1,*, Lara Maistrello 2 , Elena Costi 2, Iris Bernardinelli 3, Giorgio Malossini 3, Luca Benvenuto 3 and Stanislav Trdan 4 1 Institute of Agriculture and Forestry Nova Gorica, Pri hrastu 18, 5000 Nova Gorica, Slovenia 2 Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 42122 Reggio Emilia, Italy; [email protected] (L.M.); [email protected] (E.C.) 3 ERSA—Regional Agency for Rural Development—Plant Health Service, 33050 Pozzuolo del Friuli, Italy; [email protected] (I.B.); [email protected] (G.M.); [email protected] (L.B.) 4 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected] Simple Summary: Halyomorpha halys, the brown marmorated stink bug (BMSB), is an invasive pest causing serious damage to agricultural production. Managing this pest species is challenging because of Citation: Rot, M.; Maistrello, L.; its wide host range and lack of effective control measures. Biological control of H. halys through natural Costi, E.; Bernardinelli, I.; enemies seems to be the most environmentally friendly and sustainable solution. Extensive knowledge Malossini, G.; Benvenuto, L.; Trdan, S. of the native egg parasitoid fauna is needed prior to the introduction of a biological control program. Native and Non-Native Egg Parasitoids Associated with Brown The main purpose of the study, carried out in the Goriška region of Western Slovenia, was to detect egg Marmorated Stink Bug (Halyomorpha parasitoid species associated with H. -
Chapter 12. Estimating the Host Range of the Tachinid Trichopoda Giacomellii, Introduced Into Australia for Biological Control of the Green Vegetable Bug
__________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 12. ESTIMATING THE HOST RANGE OF THE TACHINID TRICHOPODA GIACOMELLII, INTRODUCED INTO AUSTRALIA FOR BIOLOGICAL CONTROL OF THE GREEN VEGETABLE BUG M. Coombs CSIRO Entomology, 120 Meiers Road, Indooroopilly, Queensland, Australia 4068 [email protected] BACKGROUND DESCRIPTION OF PEST INVASION AND PROBLEM Nezara viridula (L.) is a cosmopolitan pest of fruit, vegetables, and field crops (Todd, 1989). The native geographic range of N. viridula is thought to include Ethiopia, southern Europe, and the Mediterranean region (Hokkanen, 1986; Jones, 1988). Other species in the genus occur in Africa and Asia (Freeman, 1940). First recorded in Australia in 1916, N. viridula soon be- came a widespread and serious pest of most legume crops, curcubits, potatoes, tomatoes, pas- sion fruit, sorghum, sunflower, tobacco, maize, crucifers, spinach, grapes, citrus, rice, and mac- adamia nuts (Hely et al., 1982; Waterhouse and Norris, 1987). In northern Victoria, central New South Wales, and southern Queensland, N. viridula is a serious pest of soybeans and pecans (Clarke, 1992; Coombs, 2000). Immature and adult bugs feed on vegetative buds, devel- oping and mature fruits, and seeds, causing reductions in crop quality and yield. The pest status of N. viridula in Australia is assumed to be partly due to the absence of parasitoids of the nymphs and adults. No native Australian tachinids have been found to parasitize N viridula effectively, although occasional oviposition and development of some species may occur (Cantrell, 1984; Coombs and Khan, 1997). Previous introductions of biological control agents to Australia for control of N. viridula include Trichopoda pennipes (Fabricius) and Trichopoda pilipes (Fabricius) (Diptera: Tachinidae), which are important parasitoids of N. -
Biological Control of Invasive Stink Bugs: Review of Global State and Future Prospects
DOI: 10.1111/eea.12967 SPECIAL ISSUE: 6TH INTERNATIONAL ENTOMOPHAGOUS INSECTS CONFERENCE Biological control of invasive stink bugs: review of global state and future prospects Eric Conti1* , Gonzalo Avila2,3 , Barbara Barratt3,4 , Fernanda Cingolani5 , Stefano Colazza6 , Salvatore Guarino7 , Kim Hoelmer8 ,RaulAlberto Laumann9 , Lara Maistrello10 , Guillaume Martel11,12 ,EzioPeri6 ,Cesar Rodriguez-Saona13 , Gabriele Rondoni1 , Michael Rostas14 , Pio Federico Roversi15 ,Rene F.H.Sforza11 , Luciana Tavella16 & Eric Wajnberg17,18 1Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, Perugia 06121, Italy, 2The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand, 3Better Border Biosecurity, Christchurch New Zealand, 4AgResearch, Invermay Research Centre, Private Bag 50034, Mosgiel 9053, New Zealand, 5CEPAVE (CONICET-UNLP), Boulevard 120 e/ 60 y 64 s/n, La Plata 1900, Argentina, 6Dipartimento di Scienze Agrarie, Alimentari e Forestali, Universita degli Studi di Palermo, Viale delle Scienze, edificio 5, Palermo 90128, Italy, 7Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi 414, Palermo 90129, Italy, 8USDA–ARS, Beneficial Insects Introduction Research Unit, 501 S. Chapel St, Newark DE, USA, 9Embrapa Recursos Geneticos e Biotecnologia. PqEB Avda W5 Norte (Final), CEP 70770-917, Brasılia DF, Brazil, 10Dipartimento di Scienze della Vita, Centro BIOGEST-SITEIA, Universita di Modena e Reggio Emilia, Via G. Amendola 2, Reggio-Emilia 42122, Italy, 11USDA-ARS-European Biological Control Laboratory, Campus International de Baillarguet, 810, avenue du Campus Agropolis, Montferrier-sur-Lez 34980, France, 12Montpellier SupAgro, Place Pierre Viala, 2, Montpellier 34000, France, 13Department of Entomology, Rutgers University, New Brunswick NJ, 08901, USA, 14Agricultural Entomology, Department of Crop Sciences, University of G€ottingen, Grisebachstr. -
Chalcid Forum Chalcid Forum
ChalcidChalcid ForumForum A Forum to Promote Communication Among Chalcid Workers Volume 23. February 2001 Edited by: Michael E. Schauff, E. E. Grissell, Tami Carlow, & Michael Gates Systematic Entomology Lab., USDA, c/o National Museum of Natural History Washington, D.C. 20560-0168 http://www.sel.barc.usda.gov (see Research and Documents) minutes as she paced up and down B. sarothroides stems Editor's Notes (both living and partially dead) antennating as she pro- gressed. Every 20-30 seconds, she would briefly pause to Welcome to the 23rd edition of Chalcid Forum. raise then lower her body, the chalcidoid analog of a push- This issue's masthead is Perissocentrus striatululus up. Upon approaching the branch tips, 1-2 resident males would approach and hover in the vicinity of the female. created by Natalia Florenskaya. This issue is also Unfortunately, no pre-copulatory or copulatory behaviors available on the Systematic Ent. Lab. web site at: were observed. Naturally, the female wound up leaving http://www.sel.barc.usda.gov. We also now have with me. available all the past issues of Chalcid Forum avail- The second behavior observed took place at Harshaw able as PDF documents. Check it out!! Creek, ~7 miles southeast of Patagonia in 1999. Jeremiah George (a lepidopterist, but don't hold that against him) and I pulled off in our favorite camping site near the Research News intersection of FR 139 and FR 58 and began sweeping. I knew that this area was productive for the large and Michael W. Gates brilliant green-blue O. tolteca, a parasitoid of Pheidole vasleti Wheeler (Formicidae) brood. -
Program and Abstracts This Document Is Optimized for On-Screen Viewing
Program and Abstracts This document is optimized for on-screen viewing. Use bookmarks and hyperlinks to navigate Table of Contents Schedule of Events Floor Plans Greetings from the President, Entomological Society of Canada Mot de bienvenue du président de la Société d’entomologie du Canada Greetings from the President, Entomological Society of Manitoba Mot de bienvenue du président de la Société d’entomologie du Manitoba Scientific Program Entomological Society of Canada Gold Medal Médaille d’or de la Société d’entomologie du Canada Entomological Society of Canada C. Gordon Hewitt Award Prix C. Gordon Hewitt de la Société d’entomologie du Canada Norman Criddle Award Prix Norman Criddle Information for participants in scientific sessions General information about the meeting Information aux participants des sessions scientifiques Information générale sur la réunion Organizing Committee / Comité d’organisation Entomological Society of Manitoba Officers 2008–9 Officiers de la Société d’entomologie du Manitoba 2008–9 Entomological Society of Canada Officers 2008 – 9 Officiers de la Société d’entomologie du Canada 2008–9 Abstracts Schedule of Events SATURDAY 17 OCTOBER 08:30 AM – 05:30 PM Entomological Society of Canada Governing Board Meeting Gateway, Mezzanine 02:00 – 05:00 PM Registration Salon C, 1st floor SUNDAY 18 OCTOBER 09:00 AM – 01:00 PM Registration 05:30 – 07:30 PM Seventh floor foyer 09:00 AM – 01:15 PM Presentation uploading 05:30 – 07:00 PM Salon C, 1st floor 01:30 – 02:30 PM Opening ceremonies Crystal Ballroom, 7th floor 02:30 -
Preempting the Arrival of the Brown Marmorated Stink Bug, Halyomorpha Halys: Biological Control Options for Australia
insects Article Preempting the Arrival of the Brown Marmorated Stink Bug, Halyomorpha halys: Biological Control Options for Australia Valerie Caron 1,* , Tania Yonow 1, Cate Paull 2, Elijah J. Talamas 3, Gonzalo A. Avila 4 and Kim A. Hoelmer 5 1 CSIRO, Health and Biosecurity, Black Mountain, Acton, ACT 2601, Australia; [email protected] 2 CSIRO, Agriculture and Food, Dutton Park, QLD 4102, Australia; [email protected] 3 Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Bureau of Entomology, Nematology and Plant Pathology, Gainesville, FL 32608, USA; [email protected] 4 The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand; [email protected] 5 USDA, Agriculture Research Service, Beneficial Insects Introduction Research Unit, Newark, DE 19713, USA; [email protected] * Correspondence: [email protected]; Tel.: +61-02-6218-3475 Simple Summary: The brown marmorated stink bug Halyomorpha halys (Stål) (Hemiptera: Pentato- midae) is native to Northeast Asia, but has become a serious invasive species in North America and Europe, causing major economic damage to crops. Halyomorpha halys has not established itself in Australia, but it has been intercepted several times at the border, therefore future incursions and establishment are likely. There are few control options for this species and biological control may be a useful management method in Australia. This study summarizes the literature on natural enemies of H. halys in its native and invaded ranges and prioritizes potential biological control agents that could be suitable for use in Australia. The results show two egg parasitoid species as the Citation: Caron, V.; Yonow, T.; Paull, best candidates: Trissolcus japonicus (Ashmead) and Trissolcus mitsukurii (Ashmead) (Hymenoptera: C.; Talamas, E.J.; Avila, G.A.; Hoelmer, Scelionidae). -
1 Modern Threats to the Lepidoptera Fauna in The
MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011 1 2011 Thomson Paris 2 To my mother and father who helped foster my love for butterflies 3 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement throughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Mack’s Fish Camp, Susan Casey and Casey’s Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist. -
Response of the Egg Parasitoids Trissolcus Basalis and Telenomus Podisi to Compounds from Defensive Secretions of Stink Bugs
J Chem Ecol (2009) 35:8–19 DOI 10.1007/s10886-008-9578-0 Response of the Egg Parasitoids Trissolcus basalis and Telenomus podisi to Compounds from Defensive Secretions of Stink Bugs Raúl A. Laumann & Michely F. S. Aquino & Maria C. B. Moraes & Martín Pareja & Miguel Borges Received: 24 October 2008 /Revised: 1 December 2008 /Accepted: 8 December 2008 /Published online: 7 January 2009 # Springer Science + Business Media, LLC 2008 Abstract We tested the hypotheses that host-searching N. viridula glandular secretion. Higher residence time, behavior of the egg parasitoids Telenomus podisi and reduced linear velocity, and higher tortuosity in the arm of Trissolcus basalis may be differentially influenced by the the olfactometer supplied with 4-oxo-(E)-2-hexenal showed different blends of volatiles released from the metathoracic that this compound modifies the kinetics of some traits of T. glands of adult stink bug host species. We further studied basalis walking pattern and suggests that it might stimulate whether such a differential response is due to different the searching behavior of this parasitoid. The parasitoid T. individual components of these glands and whether these podisi was attracted to crude gland extracts of the preferred responses reflect host preferences. Y-tube olfactometer bio- host (Euschistus heros) and also to 4-oxo-(E)-2-hexenal. assays were carried out with crude extracts of metathoracic Additionally, this parasitoid responded positively to (E)-2- glands of five different host species of neotropical stink hexenal and to the hydrocarbon tridecane, both of which are bugs. Additionally, we tested the parasitoids’ responses to defensive compounds released from the metathoracic synthetic standards of individual compounds identified in glands by several stink bugs. -
Diptera: Tachinidae) for Efficacy and Non-Target Effects M
____________ Post-release evaluation of Trichopoda giacomellii for efficacy and non-target effects 399 POST-RELEASE EVALUATION OF TRICHOPODA GIACOMELLII (DIPTERA: TACHINIDAE) FOR EFFICACY AND NON-TARGET EFFECTS M. Coombs Commonwealth Scientific and Industrial Research Organization, Entomology, Long Pocket Laboratories, Indooroopilly, Queensland, Australia INTRODUCTION The tachinid parasitoid Trichopoda giacomellii (Blanchard) was approved for release in Australia in 1996 following quarantine evaluation as a biological control agent for Nezara viridula (L.) (Hemi- ptera: Pentatomidae) (Sands and Coombs, 1999). Release and establishment studies were completed in 1999 with establishment centered on a 1,400 acre pecan orchard located at Moree in western New South Wales, Australia (Coombs and Sands, 2000). The target pest N. viridula, as in other parts of the world, attacks a wide range of horticultural and agricultural crops in Australia (Waterhouse, 1998). The primary means of control of N. viridula has remained primarily the use of pesticides either indi- rectly from sprays targeting other pests (most often Helicoverpa spp.) or less often applied as a direct control, as was the situation in pecans (Seymour and Sands, 1993). Previous attempts at classical biological control of N. viridula in Australia have included the introduction of several egg parasitoids (primarily scelionid parasitoids of the genus Trissolcus) and tachinid parasitoids attacking adult bugs (Bogosia antinorii Rondani, Trichopoda pilipes [Fabricius], and Trichopoda pennipes [Fabricius]) (Waterhouse, 1998; Waterhouse and Sands, 2001). Whereas Trissolcus basalis (Wollaston) has proved effective in reducing N. viridula populations over parts of the pest’s range in Australia, none of the tachinid species established. Because N. viridula has re- mained a significant pest in Australia, I studied the tachinid T. -
Forest Health Technology Enterprise Team
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control ASSESSING HOST RANGES FOR PARASITOIDS AND PREDATORS USED FOR CLASSICAL BIOLOGICAL CONTROL: A GUIDE TO BEST PRACTICE R. G. Van Driesche, T. Murray, and R. Reardon (Eds.) Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2004-03 Department of Service September 2004 Agriculture he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photo: Syngaster lepidus Brullè—Timothy Paine, University of California, Riverside. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
Department of the Interior
Vol. 80 Thursday, No. 190 October 1, 2015 Part IV Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Endangered Status for 16 Species and Threatened Status for 7 Species in Micronesia; Final Rule VerDate Sep<11>2014 21:53 Sep 30, 2015 Jkt 238001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\01OCR3.SGM 01OCR3 mstockstill on DSK4VPTVN1PROD with RULES3 59424 Federal Register / Vol. 80, No. 190 / Thursday, October 1, 2015 / Rules and Regulations DEPARTMENT OF THE INTERIOR (TDD) may call the Federal Information of the physical or biological features Relay Service (FIRS) at 800–877–8339. essential to the species’ conservation. Fish and Wildlife Service SUPPLEMENTARY INFORMATION: Information regarding the life functions and habitats associated with these life 50 CFR Part 17 Executive Summary functions is complex, and informative Why we need to publish a rule. Under data are largely lacking for the 23 [Docket No. FWS–R1–ES–2014–0038; the Endangered Species Act of 1973, as Mariana Islands species. A careful 4500030113] amended (Act or ESA), a species may assessment of the areas that may have RIN 1018–BA13 warrant protection through listing if it is the physical or biological features endangered or threatened throughout all essential for the conservation of the Endangered and Threatened Wildlife or a significant portion of its range. species and that may require special and Plants; Endangered Status for 16 Listing a species as an endangered or management considerations or Species and Threatened Status for 7 threatened species can only be protections, and thus qualify for Species in Micronesia completed by issuing a rule. -
Egg Parasitoids of Stink Bugs (Hemiptera: Coreidae and Pentatomidae) on Soybean and Cowpea in Brazil Author(S): Antonio De Almeida Paz-Neto, Ranyse B
Egg Parasitoids of Stink Bugs (Hemiptera: Coreidae and Pentatomidae) on Soybean and Cowpea in Brazil Author(s): Antonio de Almeida Paz-Neto, Ranyse B. Querino and Cecilia B. Margaría Source: Florida Entomologist, 98(3):929-932. Published By: Florida Entomological Society DOI: http://dx.doi.org/10.1653/024.098.0318 URL: http://www.bioone.org/doi/full/10.1653/024.098.0318 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Egg parasitoids of stink bugs (Hemiptera: Coreidae and Pentatomidae) on soybean and cowpea in Brazil Antonio de Almeida Paz-Neto1, Ranyse B. Querino2,*, and Cecilia B. Margaría3 Abstract Parasitoids naturally attacking stink bug (Hemiptera: Coreidae and Pentatomidae) eggs and interactions with their hosts were recorded on soybean (Glycine max [L.] Merril; Fabales: Fabaceae) and cowpea (Vigna unguiculata [L.] Walp.; Fabales: Fabaceae) host plants in Brazil.