Identification and Characterization of Falcilysin, a Metallopeptidase Involved in Hemoglobin Catabolism Within the Malaria Parasite Plasmodium Falciparum*

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Characterization of Falcilysin, a Metallopeptidase Involved in Hemoglobin Catabolism Within the Malaria Parasite Plasmodium Falciparum* THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 274, No. 45, Issue of November 5, pp. 32411–32417, 1999 © 1999 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Identification and Characterization of Falcilysin, a Metallopeptidase Involved in Hemoglobin Catabolism within the Malaria Parasite Plasmodium falciparum* (Received for publication, May 25, 1999, and in revised form, August 24, 1999) Kathleen Kolakovich Eggleson, Kevin L. Duffin‡, and Daniel E. Goldberg§ From the Howard Hughes Medical Institute, Washington University, Departments of Molecular Microbiology and Medicine, St. Louis, Missouri 63110 and ‡Monsanto Corporate Research, Monsanto Company, St. Louis, Missouri 63198 The malaria parasite Plasmodium falciparum de- organelle, the food vacuole. This compartment has a pH esti- grades hemoglobin in its acidic food vacuole for use as a mated at 5.0–5.4 (3, 4). major nutrient source. A novel metallopeptidase activ- Nonproteolytic acid hydrolases could not be detected in food ity, falcilysin, was purified from food vacuoles and char- vacuoles isolated from P. falciparum (5). Thus, it appears that acterized. Falcilysin appears to function downstream of the food vacuole of P. falciparum does not function in degrada- the aspartic proteases plasmepsins I and II and the cys- tion and recycling of macromolecules in general. The catabolic Downloaded from teine protease falcipain in the hemoglobin proteolytic capability of this organelle is focused on hemoglobin. Disrup- pathway. It is unable to cleave hemoglobin or denatured tion of hemoglobin catabolism causes parasite death in an globin but readily destroys peptide fragments of hemo- globin. Falcilysin cleavage sites along the a and b chains animal model and in culture (2, 6, 7). The vital and specialized of hemoglobin are polar in character, with charged res- process of hemoglobin degradation within the food vacuole idues located in the P1 and/or P4* positions. In contrast, provides promising targets for the development of novel anti- plasmepsins I and II and falcipain prefer hydrophobic malarial drugs, greatly needed in the face of increasing resist- www.jbc.org residues around the scissile bond. The gene encoding ance to existing chemotherapeutic agents (8). falcilysin has been cloned. Its coding sequence exhibits Multiple proteases within the food vacuole facilitate the deg- features characteristic of clan ME family M16 metal- radation of hemoglobin to peptide fragments. Three acidic pro- lopeptidases, including an “inverted” HXXEH active site teases have been identified, purified from food vacuoles, and at Washington University on August 9, 2006 motif. Falcilysin shares primary structural features characterized (2, 9–14). Two aspartic proteases, plasmepsin I with M16 family members such as insulysin, mitochon- and plasmepsin II, can cleave native hemoglobin. A cysteine drial processing peptidase, nardilysin, and pitrilysin as protease, falcipain, is able to cleave denatured globin but not well as with data base hypothetical proteins that are potential M16 family members. The characterization of native hemoglobin (10, 15). Exopeptidase activity capable of falcilysin increases our understanding of hemoglobin generating individual amino acids from peptide fragments is catabolism in P. falciparum and the unusual M16 family absent from the food vacuole (16). However, peptides may tra- of metallopeptidases. verse the food vacuole membrane and could be converted to amino acids by exopeptidase activity in the parasite cytoplasm. An aminopeptidase that functions at neutral pH has been Plasmodium falciparum is a protozoan parasite that causes purified from parasites and characterized (17–19). the most lethal form of human malaria. Upon invasion of a When hemoglobin was incubated with food vacuole lysate at human erythrocyte, the parasite grows and matures sur- acidic pH, a series of discrete peptide fragments was generated rounded by cytosol consisting predominantly of a single pro- (16). Cleavage sites along the hemoglobin a and b chains were tein, hemoglobin. Amino acids derived from the proteolysis of located an average of eight amino acids apart. Many cleavage hemoglobin are incorporated into parasite proteins and para- sites corresponded to the peptide bonds previously identified as sites require supplementation with only a few amino acids that sites for the known vacuolar proteases. Twenty-four cleavage are absent or deficient in hemoglobin for normal growth in sites that could not be attributed to the known proteases of the culture (1, 2). Hemoglobin proteolysis occurs within an acidic vacuole were identified. Unlike the preference of plasmepsin I, plasmepsin II, and falcipain for hydrophobic residues, many of * This work was supported in part by National Institutes of Health the novel cleavage sites contained polar residues at the P1 Grant AI-31615. Preliminary sequence data for P. falciparum chromo- and/or P19 positions. These results suggested that one or more some 14 was obtained from The Institute for Genomic Research web- vacuolar endopeptidases had remained unidentified (16). In site. Sequencing of chromosome 14 was part of the International Ma- this report, we describe the discovery of a novel proteolytic laria Genome Sequencing Project and was supported by awards from the Burroughs Wellcome Fund and the U. S. Department of Defense. activity, purification of the enzyme responsible for this activity, The costs of publication of this article were defrayed in part by the characterization of the purified enzyme, and the corresponding payment of page charges. This article must therefore be hereby marked molecular sequence data. Furthermore, we provide evidence “advertisement” in accordance with 18 U.S.C. Section 1734 solely to that this enzyme, falcilysin, has a distinct, downstream role in indicate this fact. The nucleotide sequence for the falcilysin gene and the amino acid the semiordered hemoglobin degradation pathway of P. sequence for the falcilysin protein have been deposited in the GenBank falciparum. data base under GenBank accession number AF123458. § Recipient of a Burroughs Wellcome Fund Scholar Award in Molec- EXPERIMENTAL PROCEDURES ular Parasitology. To whom correspondence should be addressed: Wash- ington University School of Medicine, Box 8230, 660 S. Euclid Ave., St. Reagents—Human hemoglobin, human globin, pepstatin, E64, Louis, MO 63110. Tel.: 314-362-1514; Fax: 314-362-1232; E-mail: EDTA, dipicolinic acid, amastatin, bestatin, bacitracin, 1,10-phenan- [email protected]. throline, cobalt sulfate, magnesium sulfate, manganese sulfate, zinc This paper is available on line at http://www.jbc.org 32411 32412 Falcilysin, a Vacuolar Metallopeptidase from P. falciparum sulfate, BisTris,1 Klentaq LA, and Triton X-100 were obtained from Brilliant Blue staining. Endoproteinase Lys-C was used to perform an Sigma. Endoproteinase Lys-C and PMSF were from Roche Molecular in-gel digest of the falcilysin SDS-PAGE band and the resulting pep- Biochemicals (Indianapolis, IN). N-Ethylmaleimide was from Fluka tides were extracted (24). The peptide mixture was loaded onto a mi- (Buchs, Switzerland). Coomassie Brilliant Blue, gel filtration standard crobore C18 column. The column was washed for 15 min with 0.1% vials, high range SDS-PAGE standards, and Tween 20 were from Bio- trifluoroacetic acid and the peptides were eluted by applying a linear Rad (Hercules, CA). Silver nitrate was from Eastman Kodak (Roches- gradient of acetonitrile from 0 to 50% in 0.1% trifluoroacetic acid over ter, NY). The Ultrasphere C18 HPLC column was from P. J. Cobert 1 h at a flow rate of 100 ml/min. 0.5-min fractions were collected and the Associates, Inc. (St. Louis, MO). The Microbore C18 column was from peptides were detected at 215 nm on a Hewlett-Packard 1090 HPLC The Separations Group (Hesperia, CA). Mono S PC 1.6/5, Superose 12 system (Hewlett-Packard, Palo Alto, CA). Peptides were sequenced on a HR 10/30, DEAE-Sepharose, and CM-Sepharose were from Amersham PROCISE 492 protein sequencer (PE Biosystems, Foster City, CA). Pharmacia Biotech. MES and acetonitrile (CH3CN) were from Fisher Metal Requirement—The apoenzyme form of falcilysin was generated (Pittsburgh, PA). Millex HV polyvinylidine difluoride 0.45-mm filters by incubation in dilute form at 4 °C until no activity against the a71–78 were from Millipore (Bedford, MA). Synthetic oligonucleotides were substrate could be detected. Sulfate salts of Co21,Mg21,Mn21,orZn21 from Integrated DNA Technologies (Coralville, IA). The quenched flu- were added to the apoenzyme at various concentrations and tested for orescence substrates were from AnaSpec (San Jose, CA). their ability to restore activity in the fluorogenic assay. An amount of Culture—P. falciparum clones HB3 (gift of W. Trager, Rockefeller apoenzyme equivalent to 0.47 units of original holoenzyme activity University) and 3D7 (gift of P. Rathod, Catholic University) were grown (where 1 unit of activity equals 1 pmol of quenched fluorescence sub- by the method of Trager and Jensen (20) in serum-free medium sup- strate cleaved/min) was used in each reaction. plemented with 0.5% AlbuMAX I from Life Technologies, Inc. (Grand Falcilysin was tested for inhibition by 10 mM amastatin, 10 mM Island, NY). Synchrony was maintained by sorbitol treatment (21). bestatin, 1 mM pepstatin, 10 mM E64, 1 mM PMSF, 5 mM N-ethylmale- Food Vacuole Preparation—Food vacuoles were isolated from P. fal- imide, 1 mM EDTA, 500 mM dipicolinic acid, and 1 mM 1,10-phenanthro-
Recommended publications
  • Disulfide Linkages in Plasmodium Falciparum Plasmepsin-I Are Essential Elements for Its Processing Activity and Multi-Milligram Recombinant Production Yield
    Disulfide Linkages in Plasmodium falciparum Plasmepsin-I Are Essential Elements for Its Processing Activity and Multi-Milligram Recombinant Production Yield Sirisak Lolupiman1, Pilaiwan Siripurkpong2, Jirundon Yuvaniyama1* 1 Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand, 2 Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand Abstract Plasmodium falciparum plasmepsin-I (PM-I) has been considered a potential drug target for the parasite that causes fatal malaria in human. Determination of PM-I structures for rational design of its inhibitors is hindered by the difficulty in obtaining large quantity of soluble enzyme. Nearly all attempts for its heterologous expression in Escherichia coli result in the production of insoluble proteins in both semi-pro-PM-I and its truncated form, and thus require protein refolding. Moreover, the yields of purified, soluble PM-I from all reported studies are very limited. Exclusion of truncated semi-pro-PM-I expression in E. coli C41(DE3) is herein reported. We also show that the low preparation yield of purified semi-pro-PM-I with autoprocessing ability is mainly a result of structural instability of the refolded enzyme in acidic conditions due to incomplete formation of disulfide linkages. Upon formation of at least one of the two natural disulfide bonds, nearly all of the refolded semi-pro-PM-I could be activated to its mature form. A significantly improved yield of 10 mg of semi-pro-PM-I per liter of culture, which resulted in 6–8 mg of the mature PM-I, was routinely obtained using this strategy.
    [Show full text]
  • Data-Mining Approaches Reveal Hidden Families of Proteases in The
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Data-Mining Approaches Reveal Hidden Families of Proteases in the Genome of Malaria Parasite Yimin Wu,1,4 Xiangyun Wang,2 Xia Liu,1 and Yufeng Wang3,5 1Department of Protistology, American Type Culture Collection, Manassas, Virginia 20110, USA; 2EST Informatics, Astrazeneca Pharmaceuticals, Wilmington, Delaware 19810, USA; 3Department of Bioinformatics, American Type Culture Collection, Manassas, Virginia 20110, USA The search for novel antimalarial drug targets is urgent due to the growing resistance of Plasmodium falciparum parasites to available drugs. Proteases are attractive antimalarial targets because of their indispensable roles in parasite infection and development,especially in the processes of host e rythrocyte rupture/invasion and hemoglobin degradation. However,to date,only a small number of protease s have been identified and characterized in Plasmodium species. Using an extensive sequence similarity search,we have identifi ed 92 putative proteases in the P. falciparum genome. A set of putative proteases including calpain,metacaspase,and s ignal peptidase I have been implicated to be central mediators for essential parasitic activity and distantly related to the vertebrate host. Moreover,of the 92,at least 88 have been demonstrate d to code for gene products at the transcriptional levels,based upon the microarray and RT-PCR results,an d the publicly available microarray and proteomics data. The present study represents an initial effort to identify a set of expressed,active,and essential proteases as targets for inhibitor-based drug design. [Supplemental material is available online at www.genome.org.] Malaria remains one of the most dangerous infectious diseases metalloprotease (falcilysin; Eggleson et al.
    [Show full text]
  • Understanding the Structural Basis of Substrate Recognition By
    www.nature.com/scientificreports OPEN Understanding the structural basis of substrate recognition by Plasmodium falciparum plasmepsin V Received: 02 November 2015 Accepted: 20 July 2016 to aid in the design of potent Published: 17 August 2016 inhibitors Rajiv K. Bedi1,*, Chandan Patel2,*, Vandana Mishra1, Huogen Xiao3, Rickey Y. Yada4 & Prasenjit Bhaumik1 Plasmodium falciparum plasmepsin V (PfPMV) is an essential aspartic protease required for parasite survival, thus, considered as a potential drug target. This study reports the first detailed structural analysis and molecular dynamics simulation of PfPMV as an apoenzyme and its complexes with the substrate PEXEL as well as with the inhibitor saquinavir. The presence of pro-peptide in PfPMV may not structurally hinder the formation of a functionally competent catalytic active site. The structure of PfPMV-PEXEL complex shows that the unique positions of Glu179 and Gln222 are responsible for providing the specificity of PEXEL substrate with arginine at P3 position. The structural analysis also reveals that the S4 binding pocket in PfPMV is occupied by Ile94, Ala98, Phe370 and Tyr472, and therefore, does not allow binding of pepstatin, a potent inhibitor of most pepsin-like aspartic proteases. Among the screened inhibitors, the HIV-1 protease inhibitors and KNI compounds have higher binding affinities for PfPMV with saquinavir having the highest value. The presence of a flexible group at P2 and a bulky hydrophobic group at P3 position of the inhibitor is preferred in the PfPMV substrate binding pocket. Results from the present study will aid in the design of potent inhibitors of PMV. Malaria is an infectious disease that is responsible for causing illness in an estimated 200 to 500 million people and results in an annual mortality of 1 to 2 million persons1.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • University of Alberta Structural Studies Of
    UNIVERSITY OF ALBERTA STRUCTURAL STUDIES OF MALARIAL ASPARTIC PROTEINASE ACTIVATION NINA KHAZANOVICH BERNSTEIN O A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOCHEMISTRY EDMONTON, ALBERTA SPFüNG, 2000 National tibraiy Bibliothbque nationale 141 dc-da du Canada A uisitionsarid Acquisitions et B8o9raphic Services services bibliographiques 385 ~eüingbmçtreet 395, rue WeUingtori Ottawa ON KIA ON4 OttawaON KIAW Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la Natioaal Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distriiute or sell reproduire, prêter, distri'buer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimes reproduced without the author's ou autrement reproduits sans son permission. autorisation. Dedicated to my parents. Abstract Malaria is a complex and devastating disease that is a major public heaith problem in many areas of the world During the blood stage of the malaria infection, the malaria parasite, Plasmodium, lives in the human host's erythrocytes, where it digests large quantities of hernoglobin as a source of nutrients.
    [Show full text]
  • Overexpression of Plasmepsin II and Plasmepsin III Does Not Directly Cause Reduction in Plasmodium Falciparum Sensitivity to Artesunate, Chloroquine T and Piperaquine
    IJP: Drugs and Drug Resistance 9 (2019) 16–22 Contents lists available at ScienceDirect IJP: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Overexpression of plasmepsin II and plasmepsin III does not directly cause reduction in Plasmodium falciparum sensitivity to artesunate, chloroquine T and piperaquine Duangkamon Loesbanluechaia,b, Namfon Kotanana, Cristina de Cozarc, Theerarat Kochakarna, Megan R. Ansbrod,e, Kesinee Chotivanichf,g, Nicholas J. Whiteg,h, Prapon Wilairati, ∗∗ Marcus C.S. Leee, Francisco Javier Gamoc, Laura Maria Sanzc, Thanat Chookajorna, , ∗ Krittikorn Kümpornsine, a Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand b Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand c Tres Cantos Medicine Development Campus, GlaxoSmithKline, Parque Tecnológico de Madrid, Tres Cantos, 28760, Spain d Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA e Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom f Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand g Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand h Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom i Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand ARTICLE INFO ABSTRACT Keywords: Artemisinin derivatives and their partner drugs in artemisinin combination therapies (ACTs) have played a Artemisinin pivotal role in global malaria mortality reduction during the last two decades.
    [Show full text]
  • Hemoglobin-Degrading, Aspartic Proteases of Blood-Feeding Parasites SUBSTRATE SPECIFICITY REVEALED by HOMOLOGY MODELS*
    THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 276, No. 42, Issue of October 19, pp. 38844–38851, 2001 © 2001 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Hemoglobin-degrading, Aspartic Proteases of Blood-feeding Parasites SUBSTRATE SPECIFICITY REVEALED BY HOMOLOGY MODELS* Received for publication, March 2, 2001, and in revised form, August 6, 2001 Published, JBC Papers in Press, August 8, 2001, DOI 10.1074/jbc.M101934200 Ross I. Brinkworth‡, Paul Prociv§, Alex Loukas¶, and Paul J. Brindleyʈ** From the ‡Institute of Molecular Biosciences and §Department of Microbiology and Parasitology, University of Queensland, Brisbane, Queensland 4072, Australia, ¶Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia, and ʈDepartment of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112 Blood-feeding parasites, including schistosomes, hook- and mortality (1). Although phylogenetically unrelated, these worms, and malaria parasites, employ aspartic pro- parasites all share the same food source; they are obligate blood teases to make initial or early cleavages in ingested host feeders, or hematophages. Hb from ingested or parasitized hemoglobin. To better understand the substrate affinity erythrocytes is their major source of exogenous amino acids for Downloaded from of these aspartic proteases, sequences were aligned with growth, development, and reproduction; the Hb, a ϳ64-kDa and/or three-dimensional, molecular models were con- tetrameric polypeptide, is comprehensively catabolized by par- structed of the cathepsin D-like aspartic proteases of asite enzymes to free amino acids or small peptides. Intrigu- schistosomes and hookworms and of plasmepsins of ingly, all these parasites appear to employ cathepsin D-like Plasmodium falciparum and Plasmodium vivax, using aspartic proteases to make initial or early cleavages in the Hb the structure of human cathepsin D bound to the inhib- substrate (2–4).
    [Show full text]
  • Interactions of Ganoderiol-F with Aspartic Proteases of Hiv and Plasmepsin for Anti-Hiv and Anti-Malaria Discovery
    Innovare International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 6, Issue 5, 2014 Original Article INTERACTIONS OF GANODERIOL-F WITH ASPARTIC PROTEASES OF HIV AND PLASMEPSIN FOR ANTI-HIV AND ANTI-MALARIA DISCOVERY JUTTI LEVITA *, KEU HENG CHAO, MUTAKIN Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, UniversitasPadjadjaran Jl. Raya Bandung- Sumedang Km 21, Jatinangor, West Java45363, Indonesia. Email: [email protected], [email protected] Received: 07Apr 2014 Revised and Accepted: 12 May 2014 ABSTRACT Objective: HIV-1 has been a killer disease since two decades ago, while a potential cure has not yet discovered due to the fast mutations of the HIV- 1 enzymes,i.e reverse transcriptase, integrase, and protease. Apart of HIV-1, malaria has been the biggest cause of death in human and it is mostly found in the East part of Indonesia. There are some enzymes in the food vacuole of Plasmodium falciparum which are the targets of anti-malaria discovery, e.g. plasmepsin I, II, IV, and histo-aspartic protease (HAP). Both plasmepsin and HIV-1 protease are aspartic proteases, therefore a single drug could be designed to inhibit both enzymes. Ganoderiol-F is a triterpenoid isolated from the stem of Ganodermasinense which shows inhibition on HIV-1 protease with IC 50 20-40 μM. This project was aimed to study and visualize the interaction of ganoderiol-F with HIV-1 protease and plasmepsin I for anti-HIV and anti-malaria discovery. Methods: Preparation of the ligand comprises of geometry optimization using MM+ method and Polak-Ribiere (conjugate gradient) algorithm.
    [Show full text]
  • Downloaded 10/1/2021 8:14:38 AM
    RSC Advances View Article Online REVIEW View Journal | View Issue Pepsin-like aspartic proteases (PAPs) as model systems for combining biomolecular simulation Cite this: RSC Adv.,2021,11,11026 with biophysical experiments† Soumendranath Bhakat Pepsin-like aspartic proteases (PAPs) are a class of aspartic proteases which shares tremendous structural similarity with human pepsin. One of the key structural features of PAPs is the presence of a b-hairpin motif otherwise known as flap. The biological function of the PAPs is highly dependent on the conformational dynamics of the flap region. In apo PAPs, the conformational dynamics of the flap is dominated by the rotational degrees of freedom associated with c1andc2 angles of conserved Tyr (or Phe in some cases). However it is plausible that dihedral order parameters associated with several other residues might play crucial roles in the conformational dynamics of apo PAPs. Due to their size, complexities associated with conformational dynamics and clinical significance (drug targets for Creative Commons Attribution-NonCommercial 3.0 Unported Licence. malaria, Alzheimer's disease etc.), PAPs provide a challenging testing ground for computational and experimental methods focusing on understanding conformational dynamics and molecular recognition in biomolecules. The opening of the flap region is necessary to accommodate substrate/ ligand in the active site of the PAPs. The BIG challenge is to gain atomistic details into how reversible ligand binding/unbinding (molecular recognition) affects the conformational dynamics. Recent reports of kinetics (Ki, Kd) and thermodynamic parameters (DH, TDS,andDG) associated with macro-cyclic ligands bound to BACE1 (belongs to PAP family) provide a perfect challenge (how to deal with big ligands with multiple torsional angles and select optimum order parameters to study reversible ligand binding/unbinding) for computational methods to predict binding free energies and kinetics beyond This article is licensed under a typical test systems e.g.
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences In Silico Study of Andrographolide and Its Derivatives as HIV-1 Protease Inhibitors for Anti-HIV/AIDS Drug Discovery Sandra Megantara1,2*, Daryono Hadi Tjahjono1, Rahmana Emran Kartasasmita1, Maria Immaculata Iwo1, Jutti Levita2, Slamet Ibrahim1 1School of Pharmacy, Bandung Institute of Technology, Jl. Ganesha 10 Bandung 2Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, University Padjadjaran, Indonesia. ABSTRACT HIV (Human Immunodeficiency Virus) is a retrovirus that attacks and damage cells CD4+ lymphocytes. For the prevention of infection and replication of HIV, is currently used antiretroviral. However, antiretroviral widely used today has the disadvantage of many unpleasant side effects, drug interactions and drug resistance. Studies in silico states that andrographolide has antimalarial activity which works by inhibiting aspartic proteases, and obtained the best three generations that have potential as aspartic protease inhibitors. If a antiretroviral protease inhibitors (ARPIs) that is used as an anti-HIV/AIDS can work as antimalarial, a hypothesis was proposed an aspartate protease inhibitor can be used as an anti-HIV/AIDS. The objective of this paper was to investigate the interaction between andrographolide and its derivatives, with the ligand binding domain of HIV-1 protease to find the most favorable binding site as well as to predict the binding mode. Pepstatin, a protease inhibitor, was used as the standard, lopinavir and ritonavir (ARPIs drugs) ware used as comparison. LigandScout Software was used to conduct pharmacophore modelling, virtual screening and molecular docking. From pharmacophore modelling showed that there were three hydrophobic interactions and two hydrogen bond between andrographolide and amino acid residues in binding site of HIV-1 protease enzyme.
    [Show full text]
  • Computational Analysis of Plasmepsin IV Bound to an Allophenylnorstatine Inhibitor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 580 (2006) 5910–5916 Computational analysis of plasmepsin IV bound to an allophenylnorstatine inhibitor Hugo Gutie´rrez-de-Tera´na,1, Martin Nervalla, Ben M. Dunnb, Jose C. Clementeb, Johan A˚ qvista,* a Department of Cell and Molecular Biology, Uppsala University, BMC, P.O. Box 596, 751 24 Uppsala, Sweden b Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, P.O. Box 100245, Gainesville, FL 32610-0245, USA Received 12 September 2006; revised 18 September 2006; accepted 26 September 2006 Available online 5 October 2006 Edited by Peter Brzezinski edge about protein–ligand interactions, and sometimes also a Abstract The plasmepsin proteases from the malaria parasite Plasmodium falciparum are attracting attention as putative drug quantitative energetic description of relevant interactions targets. A recently published crystal structure of Plasmodium responsible for binding affinity. One example of such efforts malariae plasmepsin IV bound to an allophenylnorstatine inhib- is the structure based design of antimalarial drugs that inhibit itor [Clemente, J.C. et al. (2006) Acta Crystallogr. D 62, 246– the aspartic proteases of the Plasmodium species known as 252] provides the first structural insights regarding interactions plasmepsins (PM) [1–3]. of this family of inhibitors with plasmepsins. The compounds in This family of enzymes, together with cysteine proteases this class are potent inhibitors of HIV-1 protease, but also show and metalloproteases, are responsible for the degradation of nM binding affinities towards plasmepsin IV. Here, we utilize hemoglobin by the parasite, which occurs in the acidic food automated docking, molecular dynamics and binding free energy vacuole during the intraerythrocytic stage of the life cycle calculations with the linear interaction energy LIE method to [4].
    [Show full text]
  • Structure-Assisted Design of Drugs Towards HIV-1 and Malaria Targets
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1040 Structure-Assisted Design of Drugs Towards HIV-1 and Malaria Targets Applied on Reverse Transcriptase and Protease from HIV-1 and Plasmepsin II from Plasmodium falciparum BY JIMMY LINDBERG ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 !" # $ % # # &$ $' ($ ) * %$' + % ,' ' - ./ % # % ( ) 012. ( % ' / 3 ( & # 012. & 11 # ' / ' ' 62 p ' ' 1-5 6.44.7 6.4 8 # 9 # :/1-; ) # $ $ % < ) < ' ($ = 0 $ >% ? $ /1- % $ ! ) # $ % $ # :012; $ : ; ' % # 012 # % # %. % .## ' / $ # $ @ !5 3( ) $ % . 3( $ :553(1; A. ' - $ % ) $ ! $ % # $ ' $ &3 % $ $ # . $ :&1; ) $ $ # % $ . ) $ % $ $ ## ' 1 ) $ ) $ $ . .# . &B&C. ? $ $ . ) $ ## % $ $ -B-C ' ($ < % # % % ' / ) % % # $ C $ % % $) D $ 11 :& 11;' ($ # # & 11 . % & 11 ) $ $ ' - $ ) $ < &. &!..$ % $ & 11 % # ) $ # # $ $ ' ! A. % $ % % 012. " # $% & ' % ' ( )*+% '&% % ,-.)/01 % E , + % 1--5 .!A 1-5 6.44.7 6.4 " """ .77F :$ "BB '<'B G H " """ .77F; Till min Annika List of Papers My thesis consists of a comprehensive summary based on the following papers, in which they will be referred to by their numbers. I Lindberg,
    [Show full text]