International Journal of Molecular Sciences Review Role of PGC-1α in the Mitochondrial NAD+ Pool in Metabolic Diseases Jin-Ho Koh * and Jong-Yeon Kim * Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Korea * Correspondence:
[email protected] (J.-H.K.);
[email protected] (J.-Y.K.) Abstract: Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that regulates metabolic function. A decrease in both mitochon- dria biogenesis and NAD+ is a characteristic of metabolic diseases, and peroxisome proliferator- activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD+ pool. Here we discuss how PGC-1α is involved in the NAD+ synthesis pathway and metabolism, as well as the strategy for increasing the NAD+ pool in the metabolic disease state. Keywords: mitochondria; PGC-1α; NAD+, SIRTs; metabolic disease 1. Introduction Mitochondria are powerhouses that generate the majority of cellular ATP via fatty acid oxidation, tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and ATP synthase. Mitochondrial dysfunction is linked to metabolic diseases and health issues, including Citation: Koh, J.-H.; Kim, J.-Y. Role insulin resistance and type 2 diabetes, cancer, Alzheimer’s disease, and others [1–3]. α of PGC-1 in the Mitochondrial Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that regulates NAD+ Pool in Metabolic Diseases. Int. metabolic function, and it is an electron carrier and signaling molecule involved in response J. Mol. Sci. 2021, 22, 4558.