Photochemical Upconversion Theory: Importance of Triplet Energy Levels and Triplet Quenching

Total Page:16

File Type:pdf, Size:1020Kb

Photochemical Upconversion Theory: Importance of Triplet Energy Levels and Triplet Quenching Photochemical Upconversion Theory: Importance of Triplet Energy Levels and Triplet Quenching David Jefferies,1 Timothy W. Schmidt,2 and Laszlo Frazer1 1ARC Centre of Excellence in Exciton Science, School of Chemistry, Monash University, Clayton, Victoria, Australia 2ARC Centre of Excellence in Exciton Science, School of Chemistry, UNSW Sydney, Sydney, NSW, Australia (Dated: August 15, 2019) Photochemical upconversion is a promising way to boost the efficiency of solar cells using triplet exciton annihilation. Currently, predicting the performance of photochemical upconversion devices is challenging. We present an open source software package which takes experimental parameters as inputs and gives the figure of merit of an upconversion system, enabling theory-driven design of better solar energy devices. We incorporate the statistical distribution of triplet excitons between the sensitizer and the emitter. Using the dynamic quenching effect of the sensitizer on emitter triplet excitons, we show that the optimal sensitizer concentration can be below the sensitizer solubility limit in liquid devices. These theoretical contributions can explain, without use of heavy atom-induced triplet exciton formation or phenyl group rotation, the experimental failure of zinc octaethylporphyrin to effectively sensitize diphenylanthracene, where platinum octaethylporphyrin succeeds. Our predictions indicate a change in direction for device design that will reduce triplet exciton losses. I. INTRODUCTION determines the quantum yield of upconversion [24]. Here, we use simulations [4] to show how advanced triplet ex- Solar cells have a transparent region below their citon physics can be applied to shift the fate of excitons bandgap. The transparent region plays an important role towards annihilation and away from other decay mech- in limiting the efficiency of conventional solar cells illu- anisms. In particular, we focus on the Boltzmann dis- minated by sunlight [1, 2]. Photochemical upconversion tribution of triplets between molecules and the recently is a phenomenon which converts light a solar cell can- discovered quenching action of the sensitizer [26, 29] on not use into light that the cell can use [3{9]. The utility the triplet exciton storage in the emitter. comes from the spontaneous increase in the energy per photon. Owing to its exothermic nature, photochemical upconversion can be relatively efficient [7, 10, 12, 13]. II. OVERVIEW OF CALCULATIONS Photochemical upconversion transfers energy through a series of energy levels, which are illustrated by an en- ergy level diagram in Fig. 1. The energy levels are in We calculate the accepted figure of merit for photo- two different molecules, the sensitizer [10, 14{18] and the chemical upconversion, which is the photocurrent per emitter [19{23]. First, sunlight is absorbed by the sen- unit area caused by upconversion, under the assumption sitizer molecules. Second, the sensitizer undergoes inter- that the solar cell has perfect quantum efficiency [30]. As system crossing, which produces a triplet exciton. Third, illustrated in Fig. 2, we simulate a device consisting of a the sensitizer molecule transfers energy to an emitter solar cell, an anabathmophore layer which performs pho- molecule [24, 25]. The triplet exciton state of the emit- tochemical upconversion [12], and a Lambertian diffuse ter is relatively long-lived [22, 26], enabling energy to be reflector [4]. Our simulations use random samples from stored for conversion. Fourth, emitter excitons undergo the AM1.5G solar spectrum. For each sunlight sample, triplet annihilation. Triplet annihilation converts a pair we use random sampling to determine if the light is ab- of triplet excitons to one singlet exciton. Fifth, the emit- sorbed by the solar cell, absorbed by the sensitizer, or ter molecules in the singlet excited state produce fluores- diffusely reflected. cence. This fluorescence has a higher energy per photon It is established that, in well constructed systems, the than the light which was absorbed in the first step, so it sensitizer intersystem crossing, triplet energy transfer can be used by a solar cell. [22, 26, 31{35], and fluorescence have negligible losses. arXiv:1908.04927v1 [cond-mat.mtrl-sci] 14 Aug 2019 Photochemical upconversion cannot exceed 50% quan- Therefore, we assume they are perfectly efficient. While tum yield because triplet annihilation converts two our methods can be adapted to poorly constructed sys- triplet excitons into one singlet exciton [27]. 50% quan- tems, including low intersystem crossing rates, triplet tum yield is highly advantageous because upconversion transfer rates, and fluorescence yields, these possibilities enables use of a region of the solar spectrum where the are beyond the scope of this report. Triplet energy trans- solar cell external quantum efficiency is zero [28]. In addi- fer is further discussed in Section III. tion, the output quanta have more energy than the input The quantum yield of photochemical upconversion quanta; the energy efficiency exceeds the quantum yield. ΦUC was computed according to the accepted theory [24], In upconversion devices, the balance between desirable which incorporates the triplet exciton annihilation rate triplet exciton annihilation and other forms of triplet loss constant k2, the triplet exciton concentration [T ], and 2 FIG. 1. Photochemical upconversion energy level diagram. The system consists of sensitizer and emitter molecules. The sensitizer molecules capture light and transfer the resulting exciton to the emitter. Sn and Tn indicate the nth singlet and triplet spin energy levels, respectively. The triplet energy transfer double-ended arrows indicate that rapid triplet energy transfer achieves an equilibrium, rather than complete transfer. Figure adapted from [26]. the regular triplet loss rate constant k1: Previous work has investigated the relationship between the chemical structure and upconversion properties of k2[T ] ΦUC = (1) closely related sensitizers [17, 19, 22, 26, 37{40] and emit- 2 (k1 + k2[T ]) ters [22, 23, 41{44]. The chemical structures are illus- trated in Fig. 3 and the spectra are presented in Fig. This yield determines the quantity of fluorescence. 4. For the solar cell, we use the Tauc model of direct Using random samples from the fluorescence spectrum, bandgap absorption so that the bandgap of the solar cell we calculate the rate at which fluorescence is absorbed is a free variable [45, 46]. Details of the algorithm are in by the solar cell. The figure of merit is calculated from Section V. this rate. We also include the self-absorption and photon recycling [36], owing to both the sensitizer and the emit- ter, including diffuse reflections from the bottom surface of the anabathmophore. Self-absorption is typically small III. TRIPLET KINETICS OWING TO TRIPLET for well-designed systems. ENERGY LEVELS Our simulations use experimental solar spectral irra- diance, sensitizer absorption, emitter absorption, and The rate of energy transfer from the sensitizer to the emitter emission spectra. Therefore, they are readily emitter is much faster than the triplet decay rate of the adapted to a wide range of illumination conditions and sensitizer [22, 26, 31{35]. As a result, it is common to chemistries. For this paper, we use the sensitizer zinc discuss the decay rate of triplet excitons (excluding anni- octaethylporphyrin and the emitter diphenylanthracene. hilation) k1 as if it were the same as the triplet decay rate 3 1.2 1.8 1.6 1 Spectral irradiance (W m 1.4 0.8 1.2 1 Emitter 0.6 Sun 0.8 0.4 0.6 -2 Emission (relative) nm 0.4 -1 0.2 ) FIG. 2. An illustration of the device, including the solar 0.2 cell, light upconverting anabathmophore, and light distribut- ing diffuse reflector. The anabathmophore upconverts the 0 0 light which is not absorbed by the solar cell owing to the 300 350 400 450 500 550 600 650 700 bandgap. The sensitizer and emitter are located in the an- abathmophore. Wavelength (nm) 300000 1 ) -1 cm 250000 Solar Cell Absorptance -1 0.8 200000 0.6 150000 0.4 100000 0.2 50000 Decadic Molar Extinction (M 0 0 300 350 400 450 500 550 600 650 700 Wavelength (nm) Emitter FIG. 3. Molecular structures of sensitizer zinc octaethylpor- Sensitizer phyrin (top) and emitter 9,10-diphenylanthracene (bottom). Solar Cell FIG. 4. Example spectra, top: Solar spectral irradiance of the emitter. However, we will show that the sensitizer and diphenylanthracene emitter fluorescence (normalized to triplet decay rate can play an important role in deter- peak). Bottom: solar cell absorptance (with bandgap at mining the figure of merit, even though energy transfer 480 nm), zinc octaethylporphyrin sensitizer molar extinction, is faster than triplet decay. and emitter molar extinction. The arrow indicates the ab- In equilibrium, the distribution of triplets between the sorption peaks that sensitize upconversion. Since the solar sensitizer and the emitter is according to the Boltzmann cell is simulated as a single interface, it has a dimensionless absorptance [47]. distribution [48]. Experiments show the triplet energy transfer is the fastest rate when the emitter concentra- tion is high [22]. We assume the sensitizer and emitter triplet exciton populations are in equilibrium. The equi- librium is illustrated in Fig. 1 by the triplet energy trans- fer arrows from the sensitizer to the emitter and from the emitter to the sensitizer. S If k1 is the triplet decay rate constant in the sensitizer 4 ∆E (eV) known sensitizer molecules lack a suitable first excited -0.04 singlet spin state [52]. It is possible to harvest higher -0.02 excited states [53], a phenomenon which we do not sim- 0 0.02 ulate. While annihilation of triplet excitons located in 0.04 different molecules can be efficient [54], we assume that 8000 sensitizers will not have this property. Therefore, the concentration of usable triplet excitons is 7000 3 ∗ [E] 6000 [ E ] = [T ] ∆E : (3) − k T ) [S]e B + [E] -1 5000 (s 1 k ∆E is the energy lost during transfer of a triplet exciton 4000 from the sensitizer to the emitter.
Recommended publications
  • Photon Upconversion Based on Sensitized Triplet–Triplet Annihilation
    Coordination Chemistry Reviews 254 (2010) 2560–2573 Contents lists available at ScienceDirect Coordination Chemistry Reviews journal homepage: www.elsevier.com/locate/ccr Review Photon upconversion based on sensitized triplet–triplet annihilation Tanya N. Singh-Rachford, Felix N. Castellano ∗ Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, United States Contents 1. Introduction ..........................................................................................................................................2560 1.1. Original experimental observations of TTA in solution ......................................................................................2560 1.2. Requirements for the sensitizer and acceptor/annihilator molecules .......................................................................2561 2. Photon upconversion in solution ....................................................................................................................2561 2.1. Development of metal–organic upconverting compositions ................................................................................2561 2.2. Upconversion quantum yields ............................................................................................................... 2565 2.3. Triplet–triplet annihilation rate constants in solution.......................................................................................2566 3. Alternative acceptor/annihilators....................................................................................................................2567
    [Show full text]
  • Optical Simulation of Upconversion Nanoparticles for Solar Cells
    FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT • DEPARTMENT INFORMATIK Lehrstuhl für Informatik 10 (Systemsimulation) Optical Simulation of Upconversion Nanoparticles for Solar Cells Constantin Vogel Master Thesis Optical Simulation of Upconversion Nanoparticles for Solar Cells Constantin Vogel Master Thesis Aufgabensteller: Prof. Dr. Ch. Pflaum Betreuer: M. Sc. J. Hornich, Dr. K. Forberich Bearbeitungszeitraum: 01.07.2015–18.01.2015 Erklärung: Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet. Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Systemsimulation (Informatik 10), wird für Zwecke der Forschung und Lehre ein einfaches, kostenloses, zeitlich und örtlich unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der Master Thesis einschließlich etwaiger Schutzrechte und Urheberrechte eingeräumt. Erlangen, den 18. Januar 2016 . Acknowledgements I want to thank Christoph Pflaum and Julian Hornich (LSS), Karen Forberich (iMEET), Robyn Klupp Taylor and Fabrizio-Zagros Sadafi (LFG) for their productive collaboration. 4 Abstract Energy is a resource that experiences shortage due to climate change and consequences mankind has drawn. Thus, research tries to boost efficiency
    [Show full text]
  • Introduction to Photochemistry and Light Upconversion
    Introduction to Photochemistry and Light Upconversion CT Japan Photochemistry Workshop Tomoyasu Mani Department of Chemistry University of Connecticut 10/29/2019 1 Department of Chemistry at the University of Connecticut • @ Storrs, CT • 26 tenure‐track or tenured professors • Located in the Chemistry Building • 65 cutting‐edge research and teaching labs 2 From Low to High Upconversion Based on Triplet-Triplet Annihilation https://mani.chem.uconn.edu/photochem-workshop/ 3 Energy Flows High to Low Potential Energy © Science Media Group. ©The McGraw‐Hill 4 Energy Flows Low to High ?? Potential Energy ©The McGraw‐Hill 5 What is Photochemistry? The chemistry concerned with the chemical effects of light. Generally, a chemical reaction is caused by using UV, visible, infrared light. 700 nm 600 nm 500 nm 400 nm 6 Why Important? Photosynthesis is Driven by Light! We can see “inside” by Light! 7 Converting Light to Something Else. Making Molecules with Light. Making Electricity from Light. 8 What is Going On? General Jablonski Diagram Singlet Manifold S3 S2 IC S1 Energy Photon Fluorescence Absorption Ground State IC = internal conversion 9 Photoexcitation = Excess Energy Singlet Manifold Excited S3 S2 IC S1 Energy Photon Fluorescence Absorption Ground Ground State State IC = internal conversion 10 Fluorescence Emission BLUE Light https://cen.acs.org/biological-chemistry/biotechnology/Chemistry-Pictures-Laser-activated/97/web/2019/08 11 What is Going On? General Jablonski Diagram Singlet Manifold Triplet Manifold S3 T3 S2 T2 IC Triplet-triplet absorption
    [Show full text]
  • Deuteration of Perylene Enhances Photochemical Upconversion Efficiency
    Deuteration of Perylene Enhances Photochemical Upconversion Efficiency Andrew Danos,y Rowan W. MacQueen,y Yuen Yap Cheng,y Miroslav Dvoˇr´ak,z,k Tamim A. Darwish,{ Dane R. McCamey,x and Timothy W. Schmidt∗,y School of Chemistry, UNSW Sydney, NSW 2052, Australia, Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holesovickach 2, 180 00 Prague, Czech Republic, National Deuteration Facility, Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia, and School of Physics, UNSW Sydney, NSW 2052, Australia E-mail: [email protected] ∗To whom correspondence should be addressed ySchool of Chemistry, UNSW Sydney, NSW 2052, Australia zDepartment of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Tech- nical University in Prague, V Holesovickach 2, 180 00 Prague, Czech Republic {National Deuteration Facility, Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia xSchool of Physics, UNSW Sydney, NSW 2052, Australia kSchool of Chemistry, The University of Sydney, NSW 2006, Australia 1 Abstract Photochemical upconversion via triplet-triplet annihilation is a promising technol- ogy for improving the efficiency of photovoltaic devices. Previous studies have shown that the efficiency of upconversion depends largely on two rate constants intrinsic to the emitting species. Here we report that one of these rate constants can be altered by deuteration, leading to enhanced upconversion efficiency. For perylene, deuteration decreases the first order decay rate constant by 16±9 % at 298 K, which increases the linear upconversion response by 45±21% in the low excitation regime.
    [Show full text]
  • Towards Application in Upconversion Displays
    Photophysics of Upconversion: Towards Application in Upconversion Displays zur Erlangung des akademischen Grades einer DOKTOR-INGENIEURIN (Dr.-Ing.) von der KIT-Fakultät für Elektrotechnik und Informationstechnik des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von M. Tech., Reetu Elza Joseph geb. in: Kottayam, Kerala, Indien Tag der mündlichen Prüfung: 17 Dezember 2020 Hauptreferent: Prof. Dr. Bryce Sydney Richards Korreferent: Priv.-Doz. Dr. rer. nat. Karl W. Krämer This document is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en Kurzfassung Der Regenbogen besteht aus sieben Farben. Von Violett nach Rot, nimmt die Photonenenergie des Lichts ab. Durch die Kombination der Energien von zwei roten Photonen kann ein blaues Photon erzeugt werden. Ein solcher Prozess wird als Upconversion (UC) bezeichnet. UC kann in organischen und anorganischen Systemen beobachtet werden. Zum Beispiel ist die Kombination von zwei roten Photonen zur Erzeugung von blauem Licht in einem organischen System möglich, das aus Platin(II)-Tetraphenyltetrabenzoporphyrin und Perylen besteht. In anorganischen Systemen ist die Umwandlung von Nah-Infrarot (Photonen mit einer Energie, die geringer ist als die der roten Photonen, mit Wellenlängen zwischen 780 und 2500 nm) in sichtbares Licht häufiger. Diese Energieumwandlung wird durch Energieübertragung zwischen den leiterartigen, angeregten Energiezuständen ermöglicht, die in bestimmten Lanthanid-Ionen existieren. Insbesondere das dreiwertige Erbium-Ion (Er3+) ist wegen der Positionen seiner höheren angeregten Energiezustände, die bei Vielfachen tiefer liegender angeregter Zustände liegen, hervorzuheben. Bei der Sensibilisierung mit einem dreiwertigen Ytterbium-Ion (Yb3+), das effektiv nahinfrarotes Licht um 980 nm absorbieren und die Energie auf ein Er3+-Ion übertragen kann, werden vom Er3+-Ion verschiedene Emissionslinien im Sichtbaren beobachtet, wobei die stärksten im grünen und roten Bereich liegen.
    [Show full text]
  • Cds/Zns Core–Shell Nanocrystal Photosensitizers for Visible to UV Upconversion† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue CdS/ZnS core–shell nanocrystal photosensitizers for visible to UV upconversion† Cite this: Chem. Sci.,2017,8, 5488 Victor Gray, a Pan Xia, b Zhiyuan Huang,c Emily Moses,c Alexander Fast,d Dmitry A. Fishman,d Valentine I. Vullev, c Maria Abrahamsson, a Kasper Moth- Poulsen a and Ming Lee Tang *c Herein we report the first example of nanocrystal (NC) sensitized triplet–triplet annihilation based photon upconversion from the visible to ultraviolet (vis-to-UV). Many photocatalyzed reactions, such as water splitting, require UV photons in order to function efficiently. Upconversion is one possible means of extending the usable range of photons into the visible. Vis-to-UV upconversion is achieved with CdS/ZnS core–shell NCs as the sensitizer and 2,5-diphenyloxazole (PPO) as annihilator and emitter. The ZnS shell was crucial in order to achieve any appreciable upconversion. From time resolved photoluminescence and transient absorption measurements we conclude that the ZnS shell affects the NC and triplet energy transfer (TET) from NC to PPO in two distinct ways. Upon ZnS growth the surface traps are passivated Creative Commons Attribution 3.0 Unported Licence. Received 11th April 2017 thus increasing the TET. The shell, however, also acts as a tunneling barrier for TET, reducing the Accepted 30th May 2017 0 efficiency. This leads to an optimal shell thickness where the upconversion quantum yield (F UC)is DOI: 10.1039/c7sc01610g 0 maximized. Here the maximum F UC was determined to be 5.2 Æ 0.5% for 4 monolayers of ZnS shell on rsc.li/chemical-science CdS NCs.
    [Show full text]
  • Triplet-Sensitization by Lead Halide Perovskite Thin Films for Near-Infrared-To-Visible Upconversion
    DEBBIE: Triplet-Sensitization by Lead Halide Perovskite Thin Films for Near-Infrared-to-Visible Upconversion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Nwinhaus, Lea et al. "Triplet-Sensitization by Lead Halide Perovskite Thin Films for Near-Infrared-to-Visible Upconversion." ACS Energy Letters 4, 4 (March 2019): 888-895 © 2019 American Chemical Society As Published 10.1021/acsenergylett.9b00283 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/123322 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion Lea Nienhaus,‡,&,* Juan-Pablo Correa-Baena,† Sarah Wieghold,†,& Markus Einzinger,¶ Ting-An Lin,¶ Katherine E. Shulenberger,‡ Nathan D. Klein,‡ Mengfei Wu,¶ Vladimir Bulović,¶ Tonio Buonassisi,† Marc A. Baldo,¶,* and Moungi G. Bawendi‡,* ‡Department of Chemistry, ¶Department of Electrical Engineering and Computer Science, †Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 *corresponding authors: [email protected], [email protected] and [email protected] ABSTRACT Lead halide-based perovskite thin films have attracted great attention due to the explosive increase in perovskite solar cell efficiencies. The same optoelectronic properties that make perovskites ideal absorber materials in solar cells are also beneficial in other light-harvesting applications and make them prime candidates as triplet sensitizers in upconversion via triplet- triplet annihilation in rubrene.
    [Show full text]
  • Template for Electronic Submission to ACS Journals
    Light Emitting Photon Upconversion Nanoparticles in the Generation of Transdermal Reactive Oxygen Species Martin Prieto a, ‡, Alina Y. Rwei c, d, ‡, Teresa Alejo a, Wei Tuo c, Maria Teresa Lopez-Franco a, Gracia Mendoza a, Victor Sebastian a, b, Daniel S. Kohane c* Manuel Arruebo a ,b,* a Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain b Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain. c Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115. d Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. ‡: Both authors contributed equally to this work. 1 *: Corresponding authors: DSK ([email protected]) and MA ([email protected]) ABSTRACT Common photosensitizers used in photodynamic therapy do not penetrate the skin effectively. In addition, the visible blue and red lights used to excite such photosensitizers have shallow penetration depths through tissue. To overcome these limitations, we have synthesized ultraviolet and visible light emitting, energy-transfer based upconversion nanoparticles, and co-encapsulated them inside PLGA-PEG nanoparticles with photosensitizer protoporphyrin IX. Nd3+ has been introduced as sensitizer in the upconversion nanostructures to allow their excitation at 808 nm. The subcytotoxic doses of the hybrid nanoparticles have been evaluated on different cell lines (i.e., fibroblasts, HaCaT, THP-1 monocytic cell line, U251MG, and mMSCs cells). Upon NIR light excitation the upconversion nanoparticles emitted UV and VIS light which consequently activated the generation of reactive oxygen species (ROS).
    [Show full text]
  • Enhancing Perovskite Solar Cells Through Upconversion Nanoparticles Insertion Mathilde Schoenauer
    Enhancing perovskite solar cells through upconversion nanoparticles insertion Mathilde Schoenauer To cite this version: Mathilde Schoenauer. Enhancing perovskite solar cells through upconversion nanoparticles insertion. Materials. Sorbonne Université, 2018. English. NNT : 2018SORUS369. tel-02865362 HAL Id: tel-02865362 https://tel.archives-ouvertes.fr/tel-02865362 Submitted on 11 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Doctoral School Physique et Chimie des Matériaux (ED 397) LPEM, ESPCI Enhancing Perovskite Solar Cells Through Upconversion Nanoparticles Insertion THESIS In order to obtain the title of Philosophiæ Doctor of Sorbonne Université Specialty: Material Sciences By Mathilde Schoenauer Sebag Directed by Zhuoying Chen and Lionel Aigouy Publically defended on the 28/09/2018 in front of a jury composed by: Mrs Christel Laberty-Robert President of the jury LCMP, UPMC Mrs Emmanuelle Deleporte Reviewer LAC, ENS Cachan Mr Antonio Garcia-Martin Reviewer IMN, CSIC Mr Artem A. Bakulin Member of the jury Imperial College London Mr Lionel Aigouy Ph.-D. Supervisor LPEM, ESPCI Mrs Zhuoying Chen Ph.-D. Director LPEM, ESPCI Acknowledgments There are many people my gratitude goes to. Starting with Zhuoying, who showed strong motivation where I could be lacking of it, and who taught me how to seek for interesting results where all I could see was wasted time! Wherever my professional path takes me, I will try to adopt her determination and her skill to focalize and fix one thing at a time.
    [Show full text]
  • Pushing the Efficiency Limits of Solar Cells with Molecular Photon Upconversion
    Pushing the Efficiency Limits of Solar Cells with Molecular Photon Upconversion Summary: The abundant and sustained nature of sunlight leaves little doubt that access to inexpensive solar energy conversion technology will play a pivotal role in future global health and sustainability. As such, it is necessary to generate less expensive cells and/or increase solar cell efficiencies in order to decrease module costs per energy generated ($/kWh). As a step towards this goal we have introduced an entirely new solar energy conversion strategy that incorporates molecular photon upconversion directly into a solar cell. Photon upconversion (UC)—combining low energy light to generate a higher energy light—is a strategy to efficiently utilize the previously unharnessed, low energy portions of the solar spectrum. Our efforts thus far have demonstrated that the mechanism is feasible but the proof-of-concept device efficiency is low. Here we propose the steps necessary to significantly increase device performance. If successful, this integrated upconversion solar cell will be a lower cost alternative to traditional silicon solar cells which could have far reaching global implication for the distribution and utilization of inexpensive renewable energy. I. Description of invention: Dye-sensitized solar cells (DSSCs) are a promising alternative to traditional silicon solar cells because they can be generated using low cost, solution processable manufacturing. Since the mid-1990s the record DSSC efficiency has increased from 11% to 14.1%1 through incremental
    [Show full text]
  • Photon Upconversion Improvements Via Molecular Antennae and Their Applications
    Photon upconversion improvements via molecular antennae and their applications by David Jason Garfield A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Gabor Samorjai, Co-chair Professor P. James Schuck, Co-chair Professor Peidong Yang Professor Daniel M. Kammen Fall 2017 Photon upconversion improvements via molecular antenna and their applications Copyright ã David Jason Garfield 2017 All Rights Reserved 1 Abstract Photon upconversion improvements via molecular antennae and their applications by David Jason Garfield Doctor of Philosophy in Chemistry University of California, Berkeley Professor Gabor Samorjai, Co-chair Professor P. James Schuck, Co-chair The efficient conversion of low-energy, near-infrared (NIR) photons to higher energies promises advancements across a range of disparate fields, from more efficient solar energy capture to advanced biologic studies and therapies. At the forefront of this effort, upconverting nanoparticles (UCNPs) contain an array of lanthanide ions alloyed into a ceramic matrix, most commonly NaYF4. These lanthanide ions possess a 4f orbital manifold with a series of ladder-like, long-lived electronic states, allowing the sequential absorption of NIR photons at relatively low photon flux. The electrons climb the 4f Stark levels, absorbing multiple photons from the excitation source before relaxing back to the ground state upon emission of a photon with an energy higher than those from the source. While UCNPs are among the most efficient systems for converting NIR light to visible, they still hold key limitations, namely, they only weakly absorb incoming photons, hindering their external quantum efficiencies and overall performance.
    [Show full text]
  • Towards Visible-To-UV Photon Upconversion a Study of Annihilator Candidates for Upconversion Through Core-Shell Nanoparticle Sensitized Triplet-Triplet Annihilation
    1. CdS/ZnS sensitizer 3. Annihilator 2. Mediator O TET CdS N TTA TET ZnS Towards visible-to-UV photon upconversion A study of annihilator candidates for upconversion through core-shell nanoparticle sensitized triplet-triplet annihilation Master’s Thesis in Nanotechnology AXEL OLESUND Department of Chemistry and Chemical Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2018 Towards visible-to-UV photon upconversion A study of annihilator candidates for upconversion through core-shell nanoparticle sensitized triplet-triplet annihilation AXEL OLESUND Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg, Sweden 2018 Towards visible-to-UV photon upconversion A study of annihilator candidates for upconversion through core-shell nanoparticle sensitized triplet-triplet annihilation AXEL OLESUND © AXEL OLESUND, 2018. Supervisor: Fredrik Edhborg, Department of Chemistry and Chemical Engineering Examiner: Bo Albinsson, Department of Chemistry and Chemical Engineering Department of Chemistry and Chemical Engineering Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Cover: Visualization of the mechanisms involved for transferring energy between participating compounds in sensitized triplet-triplet annihilation. Typeset in LATEX Gothenburg, Sweden 2018 iv Towards visible-to-UV photon upconversion A study of annihilator candidates for upconversion through core-shell nanoparticle sensitized triplet-triplet annihilation AXEL OLESUND Department of Chemistry and Chemical Engineering Chalmers University of Technology Abstract Efficient harvesting of solar energy may provide the key to solving current global energy issues. Today's solar technologies have some limitations as they only exploit parts of the solar spectra efficiently. Upconversion (UC) is a promising concept where lower energy photons are transformed into photons of higher energy, and pro- vides a pathway to more efficient use of solar energy.
    [Show full text]