Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography Bibliography 1. Victor Adamchik, Stan Wagon, A Simple Formula lor 'Tr, American Mathe­ matical Monthly, Vol 104 (1997) 852-855, also in [20, pp. 557-559J. (Cited on p. 126) 2. Victor Adamchik, Stan Wagon, Pi: A 2000- Year Search Changes Direction, Education and Research, Vol 5 (1996), No. 1, 11-19, online at http://members . wri . com/victor/ articles/pi . html (Cited on p. 19, 126, 227) 3. Association pour le Developpement de la Culture Scientifique (ADCS), 61 rue Saint-Fuscien, 8000 Amiens France, Le nombre 'Tr, Sonderheft zur Zeitschrift Le PETIT ARCHIMEDE. 4. Timm Ahrendt, Schnelle Berechnung der komplexen Quadratwurzel aul hohe Genauigkeit, Logos Verlag, Berlin, 1996. Online at http://web.informatik.uni-bonn.de/II/staff/ahrendt/ AHRENDTliteratur.html (Cited on p. 148) 5. Gert Almquist, Many Correct Digits 01 'Tr, Revisited, American Mathematical Monthly, Vol. 104 (1997), No. 4, 351-353. (Cited on p. 157) 6. Archirnedes, Measurement 01 a Cirele, in The Works 01 Arehimedes, Ed. by T.L. Heath, Cambridge University Press, 1897, also in [20, pp. 7-14]. (Cited on p. 171) 7. Jörg Arndt, Remarks on arithmetical algorithms and the eompuation 01 'Tr, Online at http://www.jjj.de/joerg.html. (Cited on p. 75, 110, 233, 234) 8. Nigel Backhouse, Pancake lunctions and approximations to 'Tr. The Mathe­ matical Gazette, Vol. 79 (1995), 371-374. (Cited on p. 234) 9. David H. Bailey, The Computaion 01'Tr to 29,360,999 Decimal Digits Using Borweins' Quartically Convergent Algorithm, Mathematics of Computation, Vol. 50, No. 181 (Jan. 1988), 283-296, also in [20, pp. 562-575]. (Cited on p. 202) 10. David Bailey, Peter Borwein and Simon Plouffe, On The Rapid Computation 01 Various Polylogarithmie Constants, Online at http://ww . cecm. sfu. carpborwein, also in [20, pp. 663-676]. (Cited on p. 118, 123) 11. David H. Bailey, Jonathan M. Borwein and Peter B. Borwein, Ramanujan, Modular Equations, and Approximations to Pi or How to eompute One Billion Digits 01 Pi, American Mathematical Monthly, Vol. 96 (1989), 201-219, also in [20, pp. 623-641]. (Cited on p. 6, 105) 258 Bibliography 12. David H. Bailey, Jonathan M. Borwein and Richard E. Crandall, On the Khintchine Constant, Mathematics of Computation, Vol. 66, No. 217 (Jan. 1997),417-431. (Cited on p. 68) 13. David H. Bailey, Jonathan M. Borwein, Peter B. Borwein and Simon Plouffe, The Quest for Pi, The Mathematical Intelligencer, Vol. 19 (1997), No. 1, 50- 56. (Cited on p. 17, ll9, 122, 197, 200, 237, 238) 14. Walter William Rouse Ball, Mathematical Recreations and Essays, llth edi­ tion with revisions, Macmillan & Co Ltd, London, 1963. (Cited on p. 41, 180, 181, 182, 183) 15. Walter William Rouse Ball, Harold Scott Macdonald Coxeter, Mathematical Recreations and Essays, Toronto, 1974. (Cited on p. 25) 16. J. P. Ballantine, The best ('1) formula for computing 'Tr to a thousand places, American Mathematical Monthly, Vol. 46 (1939),499-501. (Cited on p. 74) 17. Friedrich L. Bauer, Decrypted Secrets, Methods and Maxims of Cryptology, Second, Revised and Extended Edition, Springer-Verlag, Heidelberg, 2000. (Cited on p. 61, 228) 18. Petr Beckmann, A History of'Tr (PI), Fifth Edition, The Golem Press, Boul­ der, Colorado, 1982. (Cited on p. 64, 188, 194, 195) 19. Fabrice Bellard, Computation of the n'th digit of pi on any base in O(n2 ), OnIine at http://www-stud . enst . fr rbellard/pi/. (Cited on p. 128, 227, 229, 234) 20. Lennart Berggren, Jonathan Borwein, Peter Borwein, Pi: A Source Book, Springer-Verlag, New York, 1997. (Cited on p. ll5, 187, 188, 226) 21. Bruce C. Berndt, Ramanujan-l00 Years Old (Fashioned) or 100 Years New (Fangled)'?, The Mathematical Intelligencer, Vol. 10 (1988), No. 3, 24-29. (Cited on p. 105) 22. Bruce C. Berndt, A Pilgrimage, The Mathematical Intelligencer, Vol. 8 (1986), No. 1, 25-30. (Cited on p. 105, 106) 23. Bruce C. Berndt and Robert A. Rankin, Ramanujan, Letters and Commen­ tary, American Mathematical Society, London Mathematical Society, 1995. (Cited on p. 105) 24. Bruce C. Berndt, Ramanujan's Notebooks, Part 1(1985), 11(1989), III(1991), IV(l994), V(to appear), Springer-Verlag, New York. (Cited on p. 109) 25. Bruce C. Berndt and S. Bhargava, Ramanujan - For Lowbrows, American Mathematical Monthly, Vol. 100 (1993), 644-656. (Cited on p. 58, 108) 26. Eugen Beutel, Die Quadratur des Kreises, Mathematische Bibliothek, No. 12, Verlag von B.G. Teubner, Leipzig und Berlin, 1913. (Cited on p. 181) 27. Ludwig Bieberbach, Persönlichkeitsstruktur und mathematisches Schaffen, Forschungen und Fortschritte, 10. Jahrg., Nr. 18 (20. Juni 1934), 235-237. 28. David Blatner, The Joy c;f 'Tr, Walker and Company, New York, 1997. (Cited on p. 201) Bibliography 259 29. Jonathan M. Borwein, Brouwer-Heyting Sequences Converge, Mathematical Intelligencer, Vol. 20, No. 1, 1998, 14-15. (Cited on p. 30) 30. Jonathan M. Borwein and Peter B. Borwein, The Arithmetic-Geometric Mean and Fast Computations 0/ Elementary Functions, SIAM Review, Vol. 26, No. 3 (July 1984), 351-366, aiso in [20, pp. 537-552]. (Cited on p. 114, 236) 31. Jonathan M. Borwein, Peter B. Borwein, More Ramanujan-type Series for 1/7r, Proceedings of the Centenary Conference, Univ. of Illinois at Urbana­ Champaign, June 1-5, 1987, 359-374. 32. Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM - A Study in Analytic Number Theory and Computational Complexity, Wiley, N.Y., 1987. (Cited on p. 7, 59, 73, 74, 90, 92, 114, 188, 228, 229, 237) 33. Jonathan M. Borwein, Pet er B. Borwein, Ramanujan and Pi, Science and Ap­ plications; Supercomputing 88: Volume II, 117-128, 1988. also in [20, p. 588- 595] (Cited on p. 105, 107, 111, 237) 34. Jonathan M. Borwein, Peter B. Borwein, Strange Series and High Precision Praud, American Mathematical Monthly, Vol. 99 (1992), 622-640. (Cited on p. 63, 230) 35. Jonathan M. Borwein, Pet er B. Borwein and K. Dilcher, Pi, Euler Numbers, and Asymptotic Expansions, American Mathematical Monthly, Vol. 96 (1989), 681-687, also in [20, pp. 642-648]. (Cited on p. 156, 157) 36. Jonathan M. Borwein and Roland Girgensohn, Addition theorems and binary expansions, Canadian Journal of Mathematics, Vol. 47 (1995), 262-273. (Cited on p. 48, 235) 37. Richard P. Brent, Fast Multiple-Precision Evaluation 0/ Elementary Func­ tions, Journal of the ACM, Vol. 23, No. 2, April 1976, 242-251, also in [20, pp. 424-433]. (Cited on p. 87) 38. E. Oran Brigham, The Fast Fourier Trans/orm, Prentice Hall, 1994. (Cited on p. 199) 39. David M. Burton, Burton's History 0/ Mathematics: An Introduction, Wm. C. Brown Publishers, Third Edition, 1995. (Cited on p. 14, 190) 40. George S. Carr, Formulas and Theorems in Pure Mathematics, Second Edi­ tion, Chelsea Publishing Company, 1970. (Cited on p. 106) 41. Dario Castellanos, The Ubiquitous 7r, Mathematical Magazine 61 (1988), 67- 98 (Part I) and 148-163 (Part II). (Cited on p. 45, 59, 60, 72, 154, 166, 180, 190, 198, 224, 225, 226, 227, 228, 229,232) 42. Henri Cohen, F. Rodriguez Villegas and Don Zagier Convergence accelera­ tion 0/ alternating series, Experimental Math., to appear. downloadable from http://www.math.u-bordeaux.fr/cohen/ (Cited on p. 150) 43. J.W. Cooley, and J.W.Tukey, An algorithm for the machine calculation 0/ complex Fourier series, Mathematics of Computation Vol. 19 (1965), No. 90, 297-301. (Cited on p. 137) 260 Bibliography 44. James W. Cooley, Peter A.W. Lewis and Peter D. Welch, Historical Notes on the Fast Fourier Trans/orm, Proceedings of the IEEE, Vol. 55 (October 1967), No. 10, 1675-1677. (Cited on p. 199) 45. David A. Cox, The arithmetic-geometric mean 0/ Gauss, L'Enseignment MatMmatique, t. 30 (1984), 275-330, also in [20, pp. 481-536]. (Cited on p. 95, 96, 97, 98) 46. David A. Cox, Gauss and the Arithmetic-Geometric Mean, Notices of the American Mathematical Society 32 (1985), 147-151. (Cited on p. 95) 47. Richard E. Crandall, Projects in Scientific Computation, Springer-Verlag, New York, Inc., 1994. (Cited on p. 230) 48. Jean-Paul Delahaye, Pi - die Story, Birkhäuser-Verlag, Basel, 1999. Französis• che Originalausgabe: Le /ascinant nombre ?T, Pour La Science, 1997. (Cited on p. 50) 49. Drinfel'd, Quadratur des Kreises und Transzendenz von ?T, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980. (Cited on p. 197) 50. Underwood Dudley, Mathematical Cranks, The Mathematical Association of America, 1992. (Cited on p. 8) 51. Heinz-Dieter Ebbinghaus, Reinhold Remmert, et al., Numbers, Springer­ Verlag, New York, 1990. (Cited on p. 56, 168, 170, 176, 213) 52. LeQnhard Euler, Introduction to Analysis 0/ the Infinite, Translation of: In­ troductio in analysin infinitorum, Book I, Translated by John D. Blanton, Springer-Verlag, New York, 1988, Chapter 10 also in [20, pp. 112-128]. (Cited on p. 65, 166, 194) 53. Leonhard Euler, Einleitung in die Analysis des Unendlichen, Erster Teil. Ins Deutsche übertragen von H. Maser, Berlin. Verlag von Julius Springer. 1885. (Cited on p. 166, 194) 54. Martin Gardner, Some comments by Dr. Matrix on symmetrics and reversals, Scientific American, January 1965, 110-116. (Cited on p. 24) 55. Carl Friedrich Gauß, Mathematisches Tagebuch, 1796-1814, Reihe OstwaIds Klassiker der exakten Wissenschaften, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig 1985. Also in [56, X, pp. 483-574]. (Cited on p. 98) 56. Carl Friedrich Gauß, Werke, Göttingen, 1866-1933. (Cited on p. 73, 88, 95, 99, 232) 57. C.F. Gauß, Nachlass zur Theorie des Arithmetisch-Geometrischen Mittels und der Modul/unktion, herausgegeben von Harald Geppert, Reihe Ostwald's Klas­ siker der exakten Wissenschaften, Nr. 225, Akademische Verlagsgesellschaft, Leipzig, 1927. (Cited on p.
Recommended publications
  • Emissary | Spring 2021
    Spring 2021 EMISSARY M a t h e m a t i c a lSc i e n c e sRe s e a r c hIn s t i t u t e www.msri.org Mathematical Problems in Fluid Dynamics Mihaela Ifrim, Daniel Tataru, and Igor Kukavica The exploration of the mathematical foundations of fluid dynamics began early on in human history. The study of the behavior of fluids dates back to Archimedes, who discovered that any body immersed in a liquid receives a vertical upward thrust, which is equal to the weight of the displaced liquid. Later, Leonardo Da Vinci was fascinated by turbulence, another key feature of fluid flows. But the first advances in the analysis of fluids date from the beginning of the eighteenth century with the birth of differential calculus, which revolutionized the mathematical understanding of the movement of bodies, solids, and fluids. The discovery of the governing equations for the motion of fluids goes back to Euler in 1757; further progress in the nineteenth century was due to Navier and later Stokes, who explored the role of viscosity. In the middle of the twenti- eth century, Kolmogorov’s theory of tur- bulence was another turning point, as it set future directions in the exploration of fluids. More complex geophysical models incorporating temperature, salinity, and ro- tation appeared subsequently, and they play a role in weather prediction and climate modeling. Nowadays, the field of mathematical fluid dynamics is one of the key areas of partial differential equations and has been the fo- cus of extensive research over the years.
    [Show full text]
  • 2009Catalog.Pdf
    ANNUAL CATALOG 2009 New . 1 Brain Fitness and Mathematics Classic Monographs . 10 In recent months, I have seen public television programs devoted to brain fitness. They Business Mathematics . 11 point out the great benefits of continuing to learn as we age, in particular the benefits Transition to Advanced Mathematics/ of keeping our brains healthy. Many of the exercises in brain fitness programs that I have seen have a strong mathematical component, with considerable emphasis on Analysis . 12 pattern recognition. These programs are expensive, often running between $300-$400. Analysis/Applied Mathematics/ As a mathematician, you are good at pattern recognition and related habits of mind, Calculus . 13 and as you age it’s important that you continue to exercise your brain by learning more Calculus . 14 mathematics, your favorite subject. You can do that through research, reading, and solving problems. Books and journals of the MAA can assist in building brain fitness by Careers/Combinatorics/Cryptology . 15 providing stimulating mathematical reading and problems. Moreover, for considerably Game Theory/Geometry . 16 less than $400, you can purchase more than ten exemplary books from the MAA that Geometry/Topology . 17 will contribute to keeping your brain fit and expanding your knowledge of mathematics at the same time. It’s a really a no-brainer if given the choice between purchasing a General Education/Quantitative brain fitness program and MAA books. For starters, reading an MAA book is more Literacy/History. 19 enjoyable than using a brain fitness program. A Celebration of the Life and Work of All of us want to keep our most important possession–our brains–healthy, and the Leonhard Euler .
    [Show full text]
  • Biscuits of Number Theory
    The Dolciani Mathematical Expositions NUMBER THIRTY-FOUR Biscuits of Number Theory Edited by ArthurT. Benjamin and Ezra Brown Published and Distributed by The Mathematical Association of America Introduction xi Part I: Arithmetic 1 1. A Dozen Questions About the Powers of Two 3 James Tanton. Math Horizons, vol. 8, no. 1 (September 2001), pp. 5-10; 2002 frevor Evans Award. 2. From 30 to 60 is Not Twice as Hard 13 Michael Dalezman. Mathematics Magazine, vol. 73, no. 2 (April 2000), pp. 151-153. 3. Reducing the Sum of Two Fractions 17 Harris S. Shultz and Ray C. Shiflett. Mathematics Teacher, vol. 98, no. 7 (March 2005), pp. 486-490. 4. A Postmodern View of Fractions and Reciprocals of Fermat Primes .... 23 Rafe Jones and Jan Pearce. Mathematics Magazine, vol. 73, no. 2 (April 2000), pp. 83-97; 2001 Allendoerfer Award. 5. Visible Structures in Number Theory 39 Peter Borwein and Loki Jorgenson. American Mathematical Monthly, vol. 108, no. 10 (December 2001), pp. 897-910; 2002 Lester Ford Award. 6. Visual Gems of Number Theory 53 Roger B. Nelsen. Math Horizons, vol. 15, no. 3 (February 2008), pp. 7-9, 31. Part II: Primes 59 7. A New Proof of Euclid's Theorem 61 Filip Saidak. American Mathematical Monthly, vol. 113, no. 10 (December 2006), pp. 937-938. 8. On the Infinitude of the Primes 63 Harry Furstenberg. American Mathematical Monthly, vol. 62, no. 5 (May 1955), p. 353. 9. On the Series of Prime Reciprocals 65 James A. Clarkson. Proceedings oftheAMS, vol. 17, no. 2 (April 1966), p. 541.
    [Show full text]