Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Emissary | Spring 2021
Spring 2021 EMISSARY M a t h e m a t i c a lSc i e n c e sRe s e a r c hIn s t i t u t e www.msri.org Mathematical Problems in Fluid Dynamics Mihaela Ifrim, Daniel Tataru, and Igor Kukavica The exploration of the mathematical foundations of fluid dynamics began early on in human history. The study of the behavior of fluids dates back to Archimedes, who discovered that any body immersed in a liquid receives a vertical upward thrust, which is equal to the weight of the displaced liquid. Later, Leonardo Da Vinci was fascinated by turbulence, another key feature of fluid flows. But the first advances in the analysis of fluids date from the beginning of the eighteenth century with the birth of differential calculus, which revolutionized the mathematical understanding of the movement of bodies, solids, and fluids. The discovery of the governing equations for the motion of fluids goes back to Euler in 1757; further progress in the nineteenth century was due to Navier and later Stokes, who explored the role of viscosity. In the middle of the twenti- eth century, Kolmogorov’s theory of tur- bulence was another turning point, as it set future directions in the exploration of fluids. More complex geophysical models incorporating temperature, salinity, and ro- tation appeared subsequently, and they play a role in weather prediction and climate modeling. Nowadays, the field of mathematical fluid dynamics is one of the key areas of partial differential equations and has been the fo- cus of extensive research over the years. -
2009Catalog.Pdf
ANNUAL CATALOG 2009 New . 1 Brain Fitness and Mathematics Classic Monographs . 10 In recent months, I have seen public television programs devoted to brain fitness. They Business Mathematics . 11 point out the great benefits of continuing to learn as we age, in particular the benefits Transition to Advanced Mathematics/ of keeping our brains healthy. Many of the exercises in brain fitness programs that I have seen have a strong mathematical component, with considerable emphasis on Analysis . 12 pattern recognition. These programs are expensive, often running between $300-$400. Analysis/Applied Mathematics/ As a mathematician, you are good at pattern recognition and related habits of mind, Calculus . 13 and as you age it’s important that you continue to exercise your brain by learning more Calculus . 14 mathematics, your favorite subject. You can do that through research, reading, and solving problems. Books and journals of the MAA can assist in building brain fitness by Careers/Combinatorics/Cryptology . 15 providing stimulating mathematical reading and problems. Moreover, for considerably Game Theory/Geometry . 16 less than $400, you can purchase more than ten exemplary books from the MAA that Geometry/Topology . 17 will contribute to keeping your brain fit and expanding your knowledge of mathematics at the same time. It’s a really a no-brainer if given the choice between purchasing a General Education/Quantitative brain fitness program and MAA books. For starters, reading an MAA book is more Literacy/History. 19 enjoyable than using a brain fitness program. A Celebration of the Life and Work of All of us want to keep our most important possession–our brains–healthy, and the Leonhard Euler . -
Biscuits of Number Theory
The Dolciani Mathematical Expositions NUMBER THIRTY-FOUR Biscuits of Number Theory Edited by ArthurT. Benjamin and Ezra Brown Published and Distributed by The Mathematical Association of America Introduction xi Part I: Arithmetic 1 1. A Dozen Questions About the Powers of Two 3 James Tanton. Math Horizons, vol. 8, no. 1 (September 2001), pp. 5-10; 2002 frevor Evans Award. 2. From 30 to 60 is Not Twice as Hard 13 Michael Dalezman. Mathematics Magazine, vol. 73, no. 2 (April 2000), pp. 151-153. 3. Reducing the Sum of Two Fractions 17 Harris S. Shultz and Ray C. Shiflett. Mathematics Teacher, vol. 98, no. 7 (March 2005), pp. 486-490. 4. A Postmodern View of Fractions and Reciprocals of Fermat Primes .... 23 Rafe Jones and Jan Pearce. Mathematics Magazine, vol. 73, no. 2 (April 2000), pp. 83-97; 2001 Allendoerfer Award. 5. Visible Structures in Number Theory 39 Peter Borwein and Loki Jorgenson. American Mathematical Monthly, vol. 108, no. 10 (December 2001), pp. 897-910; 2002 Lester Ford Award. 6. Visual Gems of Number Theory 53 Roger B. Nelsen. Math Horizons, vol. 15, no. 3 (February 2008), pp. 7-9, 31. Part II: Primes 59 7. A New Proof of Euclid's Theorem 61 Filip Saidak. American Mathematical Monthly, vol. 113, no. 10 (December 2006), pp. 937-938. 8. On the Infinitude of the Primes 63 Harry Furstenberg. American Mathematical Monthly, vol. 62, no. 5 (May 1955), p. 353. 9. On the Series of Prime Reciprocals 65 James A. Clarkson. Proceedings oftheAMS, vol. 17, no. 2 (April 1966), p. 541.