Bacterial Meningitis Associated with Lumbar Drains: a Retrospective Cohort Study

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Meningitis Associated with Lumbar Drains: a Retrospective Cohort Study J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.67.4.468 on 1 October 1999. Downloaded from 468 J Neurol Neurosurg Psychiatry 1999;67:468–473 Bacterial meningitis associated with lumbar drains: a retrospective cohort study William M Coplin, Anthony M Avellino, D K Kim, H Richard Winn, M Sean Grady Abstract risk of meningitis to consider when using this Objectives—The infective potential of modality, and the infective potential of lumbar lumbar drainage is an important topic drainage is an important topic deserving deserving particular study. The aetiology, particular study. We conducted a retrospective incidence, and clinical findings associated cohort study of patients with positive CSF cul- with bacterial meningitis are described in tures after lumbar drain placement to ascertain patients having continuous lumbar CSF the possible aetiologies of meningitis. Our drainage to treat communicating hydro- objectives included defining the incidence of cephalus after subarachnoid haemor- meningitis after lumbar drain placement, rhage or CSF leaks after traumatic dural describing the association of positive CSF cul- rents. tures with the clinical signs and laboratory Methods—Retrospective review of the values considered diagnostic of meningitis, and records of patients with a positive CSF describing potential risk factors for contracting bacterial culture who underwent lumbar lumbar drain associated meningitis. drain placement over a 39 month period. Results—Thirteen cases of bacterial men- Patients and methods ingitis occurred subsequent to the use of PATIENT SELECTION 312 lumbar drain kits (4.2%). All menin- The method of patient selection was identifica- gitic patients had CSF pleocytosis, but not tion of all cases of bacterial meningitis. Cases all had peripheral leukocytosis. Fever, established by culture were identified from a peripheral leukocytosis, and CSF pleocy- list of all positive CSF cultures at Harborview tosis did not help to diVerentiate the pres- Medical Center, Seattle, WA, USA between ence of bacterial meningitis from other June 1992 and December 1995. Hospital infections. Eight patients had prior CSF charts were then screened for those who drainage procedures, including ventricu- received a lumbar drain. We reviewed in detail lostomy (n=5) or lumbar drain (n=5) the records of those patients who underwent placements; two patients received both lumbar drainage. Patients’ charts were used to procedures. Six of 13 patients developed confirm information from other data sources their CSF infection within 24 hours of (for example, microbiology laboratory lumbar drain insertion. Six of 13 patients records). Diagnoses treated by lumbar drains developed meningitis while receiving anti- included communicating hydrocephalus after http://jnnp.bmj.com/ biotics for other reasons. subarachnoid haemorrhage and traumatic cra- Conclusions—External lumbar drainage nial CSF leak. The degree of hydrocephalus or Departments of seems to carry a low risk of infectious CSF leak and the patient’s clinical condition Neurological Surgery meningitis and oVers a safe alternative to determined the duration of drainage. We and Neurology, ventriculostomy or serial lumbar punc- obtained our denominator (the number of Division of Pulmonary tures. Antibiotics do not seem to protect lumbar drain placements over this time) from and Critical Care completely against developing the infec- Medicine, Harborview intrahospital usage of lumbar drain kits. The tion. The infection happens most often number of kits used was likely higher than the Medical Center, on September 26, 2021 by guest. Protected copyright. University of with skin organisms. The meningitis often number of patients treated as there were Washington, Seattle, appears within 24 hours after lumbar patients who had more than one drain placed WA, USA drain placement. Daily CSF samples during their stays in hospital. The Human W M Coplin should include bacterial cultures but cell Subjects Review Committee of the University A M Avellino counts may not oVer any additional useful D K Kim of Washington approved this research activity. H R Winn information in diagnosing the complica- M S Grady tion. Lumbar drain insertion and man- LUMBAR DRAIN TECHNIQUE agement need not be confined to the After shave (if necessary), skin preparation Correspondence to: intensive care unit. (povidone-iodine solution), and draping of the Dr William M Coplin, (J Neurol Neurosurg Psychiatry 1999;67:468–473) Departments of Neurology lumbosacral area, 1% lidocaine was infiltrated and Neurological Surgery, between the palpated spinous processes of the Wayne State University, 4201 Keywords: cerebrospinal fluid; lumbar drainage; St Antoine, 8D-UHC, meningitis lower lumbar vertebrae. A 16G Tuohy spinal Detroit, MI 48201, USA. needle was advanced until it punctured the Telephone 001 313 577 meninges. A CSF sample was sent for routine 1242; fax 001 313 745 4216; email Continuous lumbar CSF drainage may serve as studies (cell count and diVerential, glucose, [email protected] a temporising measure in treating communi- protein, gram stain, and culture). The lumbar cating hydrocephalus caused by aneurysmal drain was threaded into the subarachnoid Received 6 July 1998 and in subarachnoid haemorrhage12and is one treat- space. The needle was withdrawn and the drain revised form 25 March 1999 ment for correcting CSF leaks (spinal or attached to a drainage bag. A silk tie secured Accepted 24 April 1999 cranial). Similarly to ventriculostomy, there is a the adapter connecting the intraspinal catheter J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.67.4.468 on 1 October 1999. Downloaded from Bacterial meningitis associated with lumbar drains 469 and the external drainage system. Sterile gauze protein, Gram stain, culture, and sensitivities of dressed the skin wound. A transparent adhesive organisms isolated (if any). dressing covered the external part of the intraspinal catheter to prevent dislodgment. DEFINING VARIABLES Patients did not receive specific antibiotic Meningitis associated with lumbar drains was prophylaxis for the procedure. defined before starting the review. Among Samples of CSF were obtained from a sam- other variables, the review sought to explore pling port along the drainage catheter. This the possible association of leukocytosis, fever, port lies just distal to the junction of the and pleocytosis (predominance of segmented indwelling catheter and its connection to the neutrophils) with meningitis diagnosed by remainder of the drainage system leading to the positive CSF culture. These definitions were collection bag. This site has a three way port derived from a prior study of infections related that was closed to the drainage bag side for to ventriculostomy.3 The incidence of ventricu- sampling. Also, before sampling, the mem- lostomy infections was beyond the scope of this brane over the sampling port was swabbed with study. a povidone-iodine solution that was allowed to The diagnosis of meningitis associated with dry completely before a sterile needle was lumbar drains required the following criteria: introduced through the membrane to obtain (1) no previous meningitis before lumbar drain the CSF sample. insertion; (2) sterile CSF culture at the time of lumbar drain insertion; (3) continuous lumbar drainage>24 hours before the positive culture CLINICAL AND EPIDEMIOLOGICAL DATA was aspirated; and (4) positive culture of a CSF ABSTRACTION specimen collected from the lumbar drain or The following demographic data came from from a lumbar puncture. the charts of patients who had a positive bacte- Fever was defined as a temperature>38.5°C. rial CSF culture and a lumbar drain: age, hos- Association of fever with meningitis required pital admission date, admitting neurological the following criteria: (1) fever within 48 hours diagnosis (for example, subarachnoid haemor- of the positive CSF culture; (2) no other rhage, traumatic CSF leak), and if the patient concurrent infection; (3) if the patient had had a history of diabetes mellitus. Operations fever within 48 hours before the positive CSF were recorded (including if the surgeon entered culture, then a temperature rise>0.6°C within the ventricles) as well as neurological instru- 48 hours of the positive CSF culture; or (4) mentation (for example, placement of intracra- fever lasting for 3 days. nial pressure monitors or ventriculostomies). Peripheral leukocytosis was defined as Other clinical data were gathered—namely, >10 000 white blood cells (WBC)/mm3 of other positive CSF cultures (lumbar puncture, blood. The attribution of the leukocytosis to ventriculostomy); other microbiological cul- meningitis required: (1) leukocytosis occurring ture results (for example, blood, urine, sputum, within 48 hours of the positive CSF culture; (2) wound); CSF cell counts for 48 hours before no other concurrent infection; (3) if the WBC and after drawing the culture positive sample; count was>10 000 48 hours before the positive temperatures for 48 hours before and after CSF culture, then an increase in WBC>1000/ 3 drawing the culture positive sample; signs of mm within 48 hours of the positive culture; or http://jnnp.bmj.com/ drain site infection (for example, leaking CSF, (4) leukocytosis lasting for 3 days. purulence, erythema, induration); duration of Pleocytosis in CSF was defined as a CSF lumbar drainage; peripheral white blood cell WBC count>11 cells/mm3. Attributing CSF count; intracranial and CSF opening pressures; pleocytosis to acute bacterial meningitis
Recommended publications
  • Neurosurgery
    KALEIDA HEALTH Name ____________________________________ Date _____________ DELINEATION OF PRIVILEGES - NEUROSURGERY All members of the Department of Neurosurgery at Kaleida Health must have the following credentials: 1. Successful completion of an ACGME accredited Residency, Royal College of Physicians and Surgeons of Canada, or an ACGME equivalent Neurosurgery Residency Program. 2. Members of the clinical service of Neurosurgery must, within five (5) years of appointment to staff, achieve board certification in Neurosurgery. *Maintenance of board certification is mandatory for all providers who have achieved this status* Level 1 (core) privileges are those able to be performed after successful completion of an accredited Neurosurgery Residency program. The removal or restriction of these privileges would require further investigation as to the individual’s overall ability to practice, but there is no need to delineate these privileges individually. PLEASE NOTE: Please check the box for each privilege requested. Do not use an arrow or line to make selections. We will return applications that ignore this directive. LEVEL I (CORE) PRIVILEGES Basic Procedures including: Admission and Follow-Up Repair cranial or dural defect or lesion History and Physical for diagnosis and treatment plan* Seizure Chest tube placement Sterotactic framed localization of lesion Debride wound Sterotactic frameless localization Endotracheal intubation Transsphenoidal surgery of pituitary lesion Excision of foreign body Trauma Insertion of percutaneous arterial
    [Show full text]
  • Hydrocephalus and Shunts
    Hydrocephalus and Shunts Information for patients 2 What is hydrocephalus? The brain is surrounded by fluid, called CSF - Cerebrospinal fluid. The CSF provides some protection for the brain. The brain makes CSF in special fluid-filled spaces called ventricles. The ventricles link to each other by a system of channels through which the CSF flows and eventually leaves to surround the whole brain and spinal cord. The CSF is then taken back into the blood-stream by special channels beside the major veins on the inside of the skull. These are called arachnoid granulations. Figure 1 - Diagram of the brain showing normal CSF pathways 3 Hydrocephalus is a condition in which the CSF builds up within the brain. There are a number of causes of this: 1. The fluid pathways may be blocked or narrowed so that fluid cannot flow adequately. The causes of this blockage can include scarring, a variation in the development of the fluid pathways (present from birth) or sometimes by a tumour which blocks the CSF flow. 2. Sometimes the fluid collection channels (arachnoid granulations) can become blocked and stop working - in a similar manner to how leaves can block a drain. This can happen following an infection or a bleed (haemorrhage). As a result of this block in fluid flow, CSF builds up inside the brain, resulting in an increase in pressure. As a result of this patients most commonly report symptoms of headaches, nausea and vomiting, but problems with balance and short term memory have also been reported. There is another group of patients who do not fit into the patterns described above.
    [Show full text]
  • A Systematic Review of Virtual Reality for the Assessment of Technical Skills in Neurosurgery
    NEUROSURGICAL FOCUS Neurosurg Focus 51 (2):E15, 2021 A systematic review of virtual reality for the assessment of technical skills in neurosurgery *Justin Chan, BS,1 Dhiraj J. Pangal, BS,1 Tyler Cardinal, BS,1 Guillaume Kugener, MEng,1 Yichao Zhu, MS,1 Arman Roshannai,1 Nicholas Markarian, BS,1 Aditya Sinha, BS,1 Anima Anandkumar, PhD,2 Andrew Hung, MD,3 Gabriel Zada, MD, MS,1 and Daniel A. Donoho, MD4 1USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California; 2Computing + Mathematical Sciences, California Institute of Technology, Pasadena, California; 3USC Department of Urology, Keck School of Medicine of the University of Southern California, Los Angeles, California; and 4Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas OBJECTIVE Virtual reality (VR) and augmented reality (AR) systems are increasingly available to neurosurgeons. These systems may provide opportunities for technical rehearsal and assessments of surgeon performance. The assessment of neurosurgeon skill in VR and AR environments and the validity of VR and AR feedback has not been systematically reviewed. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted through MEDLINE and PubMed. Studies published in English between January 1990 and February 2021 describing the use of VR or AR to quantify surgical technical performance of neurosurgeons without the use of human raters were included. The types and categories of automated performance metrics (APMs) from each of these studies were recorded. RESULTS Thirty-three VR studies were included in the review; no AR studies met inclusion criteria.
    [Show full text]
  • CSW Dysnatremia Pathway
    Dysnatremia v2.2: Table of Contents Approval & Citation Summary of Version Changes Explanation of Evidence Ratings Patients At Risk for High or Low Sodium Postop Neurosurgery At Risk for Hyponatremia Periop Neurosurgery At Risk for Diabetes Insipidus Postop Neurosurgery At Risk for Diabetes Insipidus Patients with Diabetes Insipidus Periop Known Diabetes Insipidus ED or Acute Care Known Diabetes Insipidus Background How Dysnatremia Occurs For questions concerning this pathway, Last Updated: May 2021 contact: [email protected] Next Expected Review: October 2023 © 2021 Seattle Children’s Hospital, all rights reserved, Medical Disclaimer Dysnatremia v2.2: Postop Neurosurgery At Risk for Hyponatremia Approval & Citation Summary of Version Changes Explanation of Evidence Ratings Return to Table of Contents Monitoring Procedures at High Risk Orders for Low Sodium • Serum sodium and serum osmolality qam x 3 days Inclusion Criteria • Daily weight • Craniotomy • Patients with procedure • Strict intake and output • Craniosynostosis repair/ at high risk for low • If no void over 8 hours, bladder scan or ask patient to cranial vault expansion/frontal sodium void orbital advancement Call Contact Provider for • Hemispherectomy/lobectomy Exclusion Criteria • Placement of Grid and strip • Sodium <135 • Age <1 year • Tumor resection/biopsy • Endoscopic 3rd ventriculostomy • Intake and output positive > 40 ml/kg over 8 hours (ETV) • Insertion of lumbar drain • Urine output <0.5 ml/kg/hr or no void over 8 hours • Laser ablation • Subgaleal
    [Show full text]
  • Aesculap® Neuroendoscopy
    Aesculap® Neuroendoscopy Intraventricular, Endoscope-Assisted, Transnasal/Transsphenoidal Neuroendoscopic Equipment With comments from international experts in the field of neuroendoscopy and minimally-invasive neurosurgery. Aesculap Neurosurgery Aesculap Neuroendoscopy Michael Fritsch Jeremy Greenlee André Grotenhuis Nikolai Hopf Neubrandenburg, Germany Iowa City, USA Nijmegen, Netherlands Stuttgart, Germany 2 Aesculap Neurosurgery Intraventricular „ In 1924, the famous general and neurological achieve deep seated regions without approach surgeon William Halsted expressed his belief “… related traumatization of sensitive neurovascular that the tendency will always be in the direction structures. of exercising greater care and refinement in oper- The endoscopic image allows illumination and ating”. Today, within the third millennium this fun- inspection of angles in hidden parts of the surgical damental philosophy of minimally invasive therapy field with the and clear depiction of anatomical should be emphasized more than ever before, details. In addition, due to the enormous optical operating with a minimum of iatrogenic trauma depth of field of modern endoscopes, endoscopes while achieving maximum surgical efficiency. provide a three dimensional aspect of anatomic Recent improvements in preoperative imaging and structures. Recently, the intraoperative use of full surgical instrumentation allow neurosurgeons to high definition (HD) image quality offers a new treat more complex pathologies through custom- area in endoscopic neurosurgery
    [Show full text]
  • Perioperative Management of Adult Patients with External Ventricular
    SPECIAL ARTICLE Perioperative Management of Adult Patients With External Ventricular and Lumbar Drains: Guidelines From the Society for Neuroscience in Anesthesiology and Critical Care Abhijit V. Lele, MBBS, MD, MS,* Amie L. Hoefnagel, MD,w Nina Schloemerkemper, MD, Dr. med., FRCA,z David A. Wyler, MD,y Nophanan Chaikittisilpa, MD,8 Monica S. Vavilala, MD,z Bhiken I. Naik, MBBCh,# James H. Williams, MD, PhD,** Lakshmikumar Venkat Raghavan, MBBS, MD, FRCA, FRCPC,ww and Ines P. Koerner, MD, PhD,zz Representing SNACC Task Force for Developing Guidelines for Perioperative Management of External Ventricular and Lumbar Drains Key Words: external ventricular drain, ventriculostomy, lumbar Abstract: External ventricular drains and lumbar drains are drain, guidelines, perioperative, management, leveling, trans- commonly used to divert cerebrospinal fluid and to measure port, checklist, competency cerebrospinal fluid pressure. Although commonly encountered in the perioperative setting and critical for the care of neuro- (J Neurosurg Anesthesiol 2017;29:191–210) surgical patients, there are no guidelines regarding their man- agement in the perioperative period. To address this gap in the literature, The Society for Neuroscience in Anesthesiology & xternal ventricular drains (EVDs) and lumbar drains Critical Care tasked an expert group to generate evidence-based E(LDs) are temporary devices placed into the lateral guidelines. The document generated targets clinicians involved ventricles of the brain and lumbar subarachnoid space, in perioperative care
    [Show full text]
  • Perioperative Management of External Ventricular and Lumbar Drain
    Perioperative Management of External Ventricular (EVD) and Lumbar Drain (LD) Educational Document from the Society of Neuroscience in Anesthesiology & Critical Care (SNACC) SNACC Task Force for Perioperative Management of EVD & LD EVD & LD Identification Pre-op Transporting Intraoperative Introduction EVD & LD Assessment EVD & LD Management Device Set Up Indications Troubleshooting Patient Leveling and Complications Preparation Zeroing Perioperative Checklist This Presentation is Free of Commercial Bias SNACC does not endorse any particular EVD or LD system manufacturer Perioperative Management of External Ventricular and Lumbar Drain EVD & LD Identification Pre-op Transporting Intraoperative Introduction EVD & LD Assessment EVD & LD Management Device Set Up Indications Troubleshooting Patient Leveling and Complications Preparation Zeroing Perioperative Checklist Common Indications for Introduction to EVD & LD placement of EVD Acute symptomatic hydrocephalus Aneurysmal Subarachnoid Hemorrhage (SAH) Intracerebral and Intraventricular Hemorrhage with decreased level of consciousness Acute ischemic cerebellar stroke in concurrence with decompressive craniectomy ICP monitoring in Traumatic Brain Injury (TBI) TBI with post resuscitation GCS of 3-8, and abnormal computed tomography (CT) scan defined as one with hematomas, contusions, swelling, herniation or compressed basal cisterns Severe TBI with a normal CT scan if two or more of the following features are noted on admission (age over 40 yrs., unilateral or bilateral motor posturing, or SBP
    [Show full text]
  • Fact Sheet: Endoscopic Third Ventriculostomy
    Fact Sheet: Endoscopic Third Ventriculostomy In endoscopic third ventriculostomy, a small perforation is made in the thinned floor of the third ventricle, allowing movement of cerebrospinal fluid (CSF) out of the blocked ventricular system and into the interpenducular cistern (a normal CSF space). Cerebrospinal fluid within the ven- tricle is thus diverted elsewhere in an attempt to bypass an obstruction in the aqueduct of Sylvius and thereby relieve pressure. The objective of this procedure, called an “intracranial CSF diver- sion,” is to normalize pressure on the brain without using a shunt. Endoscopic third ventriculos- tomy is not a cure for hydrocephalus, but rather an alternate treatment. Although open ventriculostomies were performed as early as 1922, they became a less common method of treating hydrocephalus in the 1960s, with the advent of shunt systems. Despite recent advances in shunt technology and surgical techniques, however, shunts remain inadequate in many cases. Specifically, extracranial shunts are subject to complications such as blockage, infec- tion, and overdrainage, often necessitating repeated surgical revisions. For this reason, in selected cases, a growing number of neurosurgeons are recommending endoscopic third ventriculostomy in place of shunting. The ultimate goal of endoscopic third ventriculostomy is to render a shunt unnecessary. Although endoscopic third ventriculostomy is ideally a one-time procedure, evidence suggests that some patients will require more than one surgery to maintain adequate opening and drainage. New Technologies The revived interest in ventriculostomy as a viable alternative treatment approach is largely due to the development of a new technology called neuroendoscopy, or simply endoscopy. Neuro- endoscopy involves passing a tiny viewing scope into the third ventricle, allowing images to be projected onto a monitor located next to the operating table.
    [Show full text]
  • Icd-9-Cm (2010)
    ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular
    [Show full text]
  • The Role of the Liliequist Membrane in the Third Ventriculostomy
    The Role of the Liliequist Membrane in the Third Ventriculostomy Jose Aloysio Costa Val Filho ( [email protected] ) Vila da Serra Hospital: Hospital Vila da Serra https://orcid.org/0000-0003-3261-7147 Sebastião Nataniel da Silva Gusmão Department of Surgery, Faculty of Medicine and Department of Pediatric Neurosurgery of Hospital das Clínicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Leopoldo Mandic Ferreira Furtado Department of Surgery, Faculty of Medicine and Department of Pediatric Neurosurgery of Hospital das Clínicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Guaracy de Macedo Machado Filho Department of Neurosurgery, Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil Fernando Levi Alencar Maciel Department of Neurosurgery, Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil Original Article Keywords: ETV, Hydrocephalus, Liliequist Membrane, Neuroendoscopy Posted Date: February 4th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-171335/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Neurosurgical Review on February 23rd, 2021. See the published version at https://doi.org/10.1007/s10143-021-01508-2. Page 1/23 Abstract Endoscopic third ventriculostomy (ETV) is a hydrocephalus treatment procedure that involves opening the Liliequist membrane (LM). However, LM anatomy has not been well-studied neuroendoscopically, because approach angles differ between descriptive and microsurgical anatomical explorations. Discrepancies in ETV ecacy, especially among children age 2 and younger, may be due to incomplete LM opening.
    [Show full text]
  • HYDROCEPHALUS and SHUNTS: WHAT the NEUROLOGIST SHOULD KNOW *I17 Ian K Pople
    HYDROCEPHALUS AND SHUNTS: WHAT THE NEUROLOGIST SHOULD KNOW *i17 Ian K Pople J Neurol Neurosurg Psychiatry 2002;73(Suppl I):i17–i22 he second most common reason for being sued for negligence in neurosurgery is a problem related to hydrocephalus management (the first being spinal surgery!). However, the good Tnews is that the overall standard of care for patients with hydrocephalus appears to have greatly improved over the last 10 years with the advent of better facilities for investigation, new approaches to treatment, and a greater awareness of the need for adequate follow up. In the possi- ble absence of a local neurosurgeon with an interest in hydrocephalus, a neurologist who is faced with the ongoing care of a patient with hydrocephalus should ideally have a clear idea of what exactly constitutes appropriate follow up and which clinical and radiological warning signals of shunt problems to look out for. c DEFINITIONS Hydrocephalus is an excessive accumulation of cerebrospinal fluid (CSF) within the head caused by a disturbance of formation, flow or absorption. “Hydrocephalus ex vaccuo” is a misnomer. It refers to asymptomatic ventricular enlargement caused by generalised loss of cerebral tissue, from severe head injury, infarction or cerebral hypoxia. “Normal pressure hydrocephalus” is also a misnomer. It describes a condition in older adults of low grade hydrocephalus with intermittently raised intracranial pressure (ICP) (usually at night) causing the classic Adam’s triad of symptoms—gait apraxia, incontinence, dementia. BASIC HYDROCEPHALUS PATHOPHYSIOLOGY IN ADULTS The normal CSF production rate in an adult is 0.35 ml/min (20 ml/hour or 500 ml/24 hours).
    [Show full text]
  • General Neurosurgery Rotation
    NEUROLOGICAL SURGERY RESIDENCY PROGRAM CURRICULUM THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER The curriculum for the Neurosurgical Residency Training Program at The Ohio State University Wexner Medical Center is competency-based and designed to be completed over the duration of the residency. Upon completion of the training program, graduates will have mastered the curriculum and will be compassionate, highly knowledgeable, technically proficient neurosurgeons and academicians who have the potential to be future leaders in Neurosurgery. The competency-based curriculum is rotation specific: Year July to December January to June General Neurosurgery Rotation – General Neurosurgery Rotation – University University Hospital and James Cancer Hospital and James Cancer Center (2 months) Center (4 months) NeuroCritical Care Rotation – University Hospital NeuroOncology Rotation – James and James Cancer Center (3 months) PGY-1 Cancer Center (1 month) Surgical Intensive Care Rotation – University NeuroAnesthesia Rotation – University Hospital (1 month) Hospital and James Cancer Center (1 month) Junior Clinical Rotation (General) – Pediatric Neurosurgery Rotation – Nationwide University Hospital and James Cancer Children’s Hospital (4 months) Center (2 months) Junior Clinical Rotation (Functional/Spine) – PGY-2 Junior Clinical Rotation (Vascular) – University Hospital (2 months) University Hospital (2 months) Junior Clinical Rotation (Oncology) James Cancer Center (2 months) Junior Clinical Rotation (General) – University Pediatric Neurosurgery
    [Show full text]