Decompressive Craniectomy

Total Page:16

File Type:pdf, Size:1020Kb

Decompressive Craniectomy Neurocrit Care (2008) 8:456–470 DOI 10.1007/s12028-008-9082-y REVIEW ARTICLE Decompressive Craniectomy Clemens M. Schirmer Æ Albert A. Ackil Jr. Æ Adel M. Malek Published online: 8 April 2008 Ó Humana Press Inc. 2008 Abstract Decompressive Craniectomy (DC) is used to Keywords Decompressive craniectomy Á treat elevated intracranial pressure that is unresponsive to Intracranial hypertension Á Cerebral edema Á Surgical Á conventional treatment modalities. The underlying cause of Subarachnoid hemorrhage Á Traumatic brain injury Á intracranial hypertension may vary and consequently there Stroke Á Infarction Á Review is a broad range of literature on the uses of this procedure. Traumatic brain injury (TBI), middle cerebral artery (MCA) infarction, and aneurysmal subarachnoid hemor- Introduction rhage (SAH) are three conditions for which DC has been predominantly used in the past. Despite an increasing Decompressive Craniectomy (DC) describes the temporary number of reports supportive of DC, the controversy over removal of a portion of the skull for the relief of high intra- the suitability of the procedure and criteria for patient cranial pressure. This can be achieved by removal of the selection remains unresolved. Although the majority of fronto-temporal-occipital bone over one or both cranial published studies is retrospective, the recent publication of hemispheres or can involve a bi-lateral removal [1, 2]. High several randomized prospective studies prompts a reeval- intracranial pressure within the fixed-volume skull, resulting uation of the utility of DC. We review the literature from cerebral edema, intracranial hemorrhage, or a space- concerning the use of DC in TBI, MCA infarction, and occupying hematoma can quickly lead to secondary brain SAH and address the evidence regarding common ques- damage, herniation, permanent neurological damage, or tions pertaining to the timing of and laterality of the death. DC effectively increases the volume that the brain can procedure. We conclude that at the time of this review, occupy under the scalp and may minimize ischemic damage there still remains insufficient data to support the routine by allowing increased cerebral blood flow and tissue oxy- use of DC in TBI, stroke or SAH. There is evidence that genation [3–5]. Common indications for DC are traumatic early and aggressive use of DC in good-grade patients may brain injury (TBI), malignant middle cerebral artery (MCA) improve outcome, but the notion that DC is indicated in infarction, and subarachnoid hemorrhage (SAH). DC has these patients is contentious. At this point, the indication been described in many studies as a life-saving intervention, for DC should be individualized and its potential implica- which consistently decreases mortality and can often tions on long-term outcomes should be comprehensively improve outcomes, especially when performed early in the discussed with the caregivers. course of the disease [6–9]. Despite growing evidence that better outcomes are associated with timely surgery, DC is still used mainly as a salvage procedure after all other options of ICP management have been exhausted. The perception of C. M. Schirmer Á A. A. Ackil Jr. Á A. M. Malek (&) DC as a high-risk invasive treatment, historical preference Cerebrovascular and Endovascular Division, Department for medical and non-surgical therapies, and a lack of con- of Neurosurgery, Tufts Medical Center, Tufts clusive data on the subject have limited widespread University School of Medicine, 800 Washington Street #178, Boston, MA 02111, USA advocacy of the procedure and sparked debate concerning its e-mail: [email protected] benefits and real risks. In this article, we explore the Neurocrit Care (2008) 8:456–470 457 historical significance of DC, summarize recent literature on and variations exist with their advantages and disadvan- the procedure for the three main indications, and discuss tages in a given situation. Nevertheless, there are some some of the common issues surrounding its application. common points to consider. Unilateral DC may be indicated in patients with unilateral hemispheric swelling and midline shift after TBI, ischemic Historical Uses of DC stroke, or SAH and is performed utilizing a large question- mark shaped incision and craniectomy. Appropriate sizing The surgical removal of a portion of the skull, either for of the craniectomy is of utmost importance since a small medical or superstitious reasons is known in the anthro- craniectomy may cause trans-craniectomy-defect brain pological context as ‘‘trepanation.’’ This commonly herniation and venous compression along the bony margin involved the drilling or scraping of a hole into the skull. with consequent venous infarction and exacerbated edema. Evidence of the most primitive craniectomy have been Processes that result in diffuse brain edema can be found in skeletons up to 6,000 years old, with well docu- decompressed using a bilateral approach [1] or by per- mented archaeological findings spread from pre-Columbian forming a decompression of the non-dominant hemisphere. Peru to bronze-age Europe and Neolithic Africa [10]. In the Bilateral DC may be performed by either decompressing late 1800’s, the French physician and surgeon Paul Broca each hemisphere through separate unilateral DC or through a became intensely interested in the subject of primitive bifrontal craniectomy extending from the floor of the ante- trepanation; he controversially theorized that this peculiar rior fossa to the coronal suture and the pterion bilaterally. ancient practice was the earliest evidence of a surgical In our opinion, adequate decompression can only be treatment for the build up of intracranial pressure [11]. achieved by opening the dura in a wide and stellate fashion. Modern use of the early trepanation technique is still seen In the past, some surgeons chose to leave the dura intact in isolated tribal societies of the South Pacific and Africa, [16], but durotomy with dural expansion has been shown to mainly for the treatment of epilepsy and headache [12]. lower ICP to 30% of the pre-surgical levels as opposed to There is a broad speculation as to the reasons that ancient 85% when the dura left intact [5, 17]. If ICP levels remain practitioners removed skull portions on living subjects, but above 30 mmHg postoperatively with the addition of the logic in the observed modern cases argues that opening medical treatment, anterior temporal lobectomy may be a hole in the skull creates a way of escape for the demons performed to further increase the space available for the or spirits possessing an ailing person [12]. swollen brain to expand into [6, 18]. Surgeons in ancient Greece and Rome that had been The removed bone flap may be stored in a sub-zero trained in the Hippocratic school of medicine, that empha- degrees Fahrenheit (-20°C) temperature freezer or sized the balance of certain humors of the body, used a embedded through a separate incision in the subcutaneous variety of procedures that relieved pressures and resulting layer of the patient’s abdominal wall in anticipation of the disease due to a buildup of a humor, including trepanation. subsequent cranioplasty needed to reconstruct the skull Galen, in a more practical vein, advocated the use of skull contour and offer long-term physical protection. The removal for closed head injuries and splintered skull frac- requirement for this second surgery to replace the bone flap tures in his surgical treatise. The medieval Arab physician is an added risk, which must be considered in the initial Al-Zahrawi, known in Western literature as Abulcasis, surgical decision. There are also complications that are developed the use of ‘‘non-sinking’’ drills designed to avoid specific to the cranioplasty surgery, including bone piercing the dura during the decompression procedure [13]. resorption [19, 20], osteomyelitis [21], and hypovascular In 1901, Emil Theodore Kocher became the first in the bone necrosis [22]. Recent reports have suggested that modern literature to describe the technique of surgical earlier replacement of the bone flap, at 5–8 weeks instead decompression and its value in relieving intracranial pres- of the more conventional 2–3 months, can reverse some of sure [14]. Harvey Cushing later described a bilateral the common recovery symptoms and even create a better subtemporal craniectomy in order to relieve pressure on the overall functional outcome [23, 24]. brain from an inaccessible tumor [15]. Clinical Indications Surgical Technique The majority of the available literature describes DC in DC does not describe a single standardized procedure but reference to a particular primary event, most commonly rather the manner of achieving adequate and lasting TBI, SAH, or hemispheric MCA infarction (Figs. 1–3). decompression of the brain in a given patient with the least Less frequent uses of DC with positive results for the invasive method available. Therefore, a variety of methods treatment of refractory ICP have been reported in other 458 Neurocrit Care (2008) 8:456–470 Fig. 1 Case 1: A 37 year old man presented with sudden- onset headache and rapidly deteriorated, suffered from cardiac arrest and was successfully resuscitated. Non- contrast enhanced computertomographic (CT) images of the head revealed subarachnoid hemorrhage and small gyrus rectus hemorrhage at the base of the right frontal lobe (A). A berry aneurysm of the anterior communicating artery was seen on CT angiography and subsequently confirmed on digital subtraction
Recommended publications
  • Neurosurgery
    KALEIDA HEALTH Name ____________________________________ Date _____________ DELINEATION OF PRIVILEGES - NEUROSURGERY All members of the Department of Neurosurgery at Kaleida Health must have the following credentials: 1. Successful completion of an ACGME accredited Residency, Royal College of Physicians and Surgeons of Canada, or an ACGME equivalent Neurosurgery Residency Program. 2. Members of the clinical service of Neurosurgery must, within five (5) years of appointment to staff, achieve board certification in Neurosurgery. *Maintenance of board certification is mandatory for all providers who have achieved this status* Level 1 (core) privileges are those able to be performed after successful completion of an accredited Neurosurgery Residency program. The removal or restriction of these privileges would require further investigation as to the individual’s overall ability to practice, but there is no need to delineate these privileges individually. PLEASE NOTE: Please check the box for each privilege requested. Do not use an arrow or line to make selections. We will return applications that ignore this directive. LEVEL I (CORE) PRIVILEGES Basic Procedures including: Admission and Follow-Up Repair cranial or dural defect or lesion History and Physical for diagnosis and treatment plan* Seizure Chest tube placement Sterotactic framed localization of lesion Debride wound Sterotactic frameless localization Endotracheal intubation Transsphenoidal surgery of pituitary lesion Excision of foreign body Trauma Insertion of percutaneous arterial
    [Show full text]
  • Hydrocephalus and Shunts
    Hydrocephalus and Shunts Information for patients 2 What is hydrocephalus? The brain is surrounded by fluid, called CSF - Cerebrospinal fluid. The CSF provides some protection for the brain. The brain makes CSF in special fluid-filled spaces called ventricles. The ventricles link to each other by a system of channels through which the CSF flows and eventually leaves to surround the whole brain and spinal cord. The CSF is then taken back into the blood-stream by special channels beside the major veins on the inside of the skull. These are called arachnoid granulations. Figure 1 - Diagram of the brain showing normal CSF pathways 3 Hydrocephalus is a condition in which the CSF builds up within the brain. There are a number of causes of this: 1. The fluid pathways may be blocked or narrowed so that fluid cannot flow adequately. The causes of this blockage can include scarring, a variation in the development of the fluid pathways (present from birth) or sometimes by a tumour which blocks the CSF flow. 2. Sometimes the fluid collection channels (arachnoid granulations) can become blocked and stop working - in a similar manner to how leaves can block a drain. This can happen following an infection or a bleed (haemorrhage). As a result of this block in fluid flow, CSF builds up inside the brain, resulting in an increase in pressure. As a result of this patients most commonly report symptoms of headaches, nausea and vomiting, but problems with balance and short term memory have also been reported. There is another group of patients who do not fit into the patterns described above.
    [Show full text]
  • A Systematic Review of Virtual Reality for the Assessment of Technical Skills in Neurosurgery
    NEUROSURGICAL FOCUS Neurosurg Focus 51 (2):E15, 2021 A systematic review of virtual reality for the assessment of technical skills in neurosurgery *Justin Chan, BS,1 Dhiraj J. Pangal, BS,1 Tyler Cardinal, BS,1 Guillaume Kugener, MEng,1 Yichao Zhu, MS,1 Arman Roshannai,1 Nicholas Markarian, BS,1 Aditya Sinha, BS,1 Anima Anandkumar, PhD,2 Andrew Hung, MD,3 Gabriel Zada, MD, MS,1 and Daniel A. Donoho, MD4 1USC Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, California; 2Computing + Mathematical Sciences, California Institute of Technology, Pasadena, California; 3USC Department of Urology, Keck School of Medicine of the University of Southern California, Los Angeles, California; and 4Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas OBJECTIVE Virtual reality (VR) and augmented reality (AR) systems are increasingly available to neurosurgeons. These systems may provide opportunities for technical rehearsal and assessments of surgeon performance. The assessment of neurosurgeon skill in VR and AR environments and the validity of VR and AR feedback has not been systematically reviewed. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted through MEDLINE and PubMed. Studies published in English between January 1990 and February 2021 describing the use of VR or AR to quantify surgical technical performance of neurosurgeons without the use of human raters were included. The types and categories of automated performance metrics (APMs) from each of these studies were recorded. RESULTS Thirty-three VR studies were included in the review; no AR studies met inclusion criteria.
    [Show full text]
  • CSW Dysnatremia Pathway
    Dysnatremia v2.2: Table of Contents Approval & Citation Summary of Version Changes Explanation of Evidence Ratings Patients At Risk for High or Low Sodium Postop Neurosurgery At Risk for Hyponatremia Periop Neurosurgery At Risk for Diabetes Insipidus Postop Neurosurgery At Risk for Diabetes Insipidus Patients with Diabetes Insipidus Periop Known Diabetes Insipidus ED or Acute Care Known Diabetes Insipidus Background How Dysnatremia Occurs For questions concerning this pathway, Last Updated: May 2021 contact: [email protected] Next Expected Review: October 2023 © 2021 Seattle Children’s Hospital, all rights reserved, Medical Disclaimer Dysnatremia v2.2: Postop Neurosurgery At Risk for Hyponatremia Approval & Citation Summary of Version Changes Explanation of Evidence Ratings Return to Table of Contents Monitoring Procedures at High Risk Orders for Low Sodium • Serum sodium and serum osmolality qam x 3 days Inclusion Criteria • Daily weight • Craniotomy • Patients with procedure • Strict intake and output • Craniosynostosis repair/ at high risk for low • If no void over 8 hours, bladder scan or ask patient to cranial vault expansion/frontal sodium void orbital advancement Call Contact Provider for • Hemispherectomy/lobectomy Exclusion Criteria • Placement of Grid and strip • Sodium <135 • Age <1 year • Tumor resection/biopsy • Endoscopic 3rd ventriculostomy • Intake and output positive > 40 ml/kg over 8 hours (ETV) • Insertion of lumbar drain • Urine output <0.5 ml/kg/hr or no void over 8 hours • Laser ablation • Subgaleal
    [Show full text]
  • Aesculap® Neuroendoscopy
    Aesculap® Neuroendoscopy Intraventricular, Endoscope-Assisted, Transnasal/Transsphenoidal Neuroendoscopic Equipment With comments from international experts in the field of neuroendoscopy and minimally-invasive neurosurgery. Aesculap Neurosurgery Aesculap Neuroendoscopy Michael Fritsch Jeremy Greenlee André Grotenhuis Nikolai Hopf Neubrandenburg, Germany Iowa City, USA Nijmegen, Netherlands Stuttgart, Germany 2 Aesculap Neurosurgery Intraventricular „ In 1924, the famous general and neurological achieve deep seated regions without approach surgeon William Halsted expressed his belief “… related traumatization of sensitive neurovascular that the tendency will always be in the direction structures. of exercising greater care and refinement in oper- The endoscopic image allows illumination and ating”. Today, within the third millennium this fun- inspection of angles in hidden parts of the surgical damental philosophy of minimally invasive therapy field with the and clear depiction of anatomical should be emphasized more than ever before, details. In addition, due to the enormous optical operating with a minimum of iatrogenic trauma depth of field of modern endoscopes, endoscopes while achieving maximum surgical efficiency. provide a three dimensional aspect of anatomic Recent improvements in preoperative imaging and structures. Recently, the intraoperative use of full surgical instrumentation allow neurosurgeons to high definition (HD) image quality offers a new treat more complex pathologies through custom- area in endoscopic neurosurgery
    [Show full text]
  • Perioperative Management of Adult Patients with External Ventricular
    SPECIAL ARTICLE Perioperative Management of Adult Patients With External Ventricular and Lumbar Drains: Guidelines From the Society for Neuroscience in Anesthesiology and Critical Care Abhijit V. Lele, MBBS, MD, MS,* Amie L. Hoefnagel, MD,w Nina Schloemerkemper, MD, Dr. med., FRCA,z David A. Wyler, MD,y Nophanan Chaikittisilpa, MD,8 Monica S. Vavilala, MD,z Bhiken I. Naik, MBBCh,# James H. Williams, MD, PhD,** Lakshmikumar Venkat Raghavan, MBBS, MD, FRCA, FRCPC,ww and Ines P. Koerner, MD, PhD,zz Representing SNACC Task Force for Developing Guidelines for Perioperative Management of External Ventricular and Lumbar Drains Key Words: external ventricular drain, ventriculostomy, lumbar Abstract: External ventricular drains and lumbar drains are drain, guidelines, perioperative, management, leveling, trans- commonly used to divert cerebrospinal fluid and to measure port, checklist, competency cerebrospinal fluid pressure. Although commonly encountered in the perioperative setting and critical for the care of neuro- (J Neurosurg Anesthesiol 2017;29:191–210) surgical patients, there are no guidelines regarding their man- agement in the perioperative period. To address this gap in the literature, The Society for Neuroscience in Anesthesiology & xternal ventricular drains (EVDs) and lumbar drains Critical Care tasked an expert group to generate evidence-based E(LDs) are temporary devices placed into the lateral guidelines. The document generated targets clinicians involved ventricles of the brain and lumbar subarachnoid space, in perioperative care
    [Show full text]
  • Perioperative Management of External Ventricular and Lumbar Drain
    Perioperative Management of External Ventricular (EVD) and Lumbar Drain (LD) Educational Document from the Society of Neuroscience in Anesthesiology & Critical Care (SNACC) SNACC Task Force for Perioperative Management of EVD & LD EVD & LD Identification Pre-op Transporting Intraoperative Introduction EVD & LD Assessment EVD & LD Management Device Set Up Indications Troubleshooting Patient Leveling and Complications Preparation Zeroing Perioperative Checklist This Presentation is Free of Commercial Bias SNACC does not endorse any particular EVD or LD system manufacturer Perioperative Management of External Ventricular and Lumbar Drain EVD & LD Identification Pre-op Transporting Intraoperative Introduction EVD & LD Assessment EVD & LD Management Device Set Up Indications Troubleshooting Patient Leveling and Complications Preparation Zeroing Perioperative Checklist Common Indications for Introduction to EVD & LD placement of EVD Acute symptomatic hydrocephalus Aneurysmal Subarachnoid Hemorrhage (SAH) Intracerebral and Intraventricular Hemorrhage with decreased level of consciousness Acute ischemic cerebellar stroke in concurrence with decompressive craniectomy ICP monitoring in Traumatic Brain Injury (TBI) TBI with post resuscitation GCS of 3-8, and abnormal computed tomography (CT) scan defined as one with hematomas, contusions, swelling, herniation or compressed basal cisterns Severe TBI with a normal CT scan if two or more of the following features are noted on admission (age over 40 yrs., unilateral or bilateral motor posturing, or SBP
    [Show full text]
  • Fact Sheet: Endoscopic Third Ventriculostomy
    Fact Sheet: Endoscopic Third Ventriculostomy In endoscopic third ventriculostomy, a small perforation is made in the thinned floor of the third ventricle, allowing movement of cerebrospinal fluid (CSF) out of the blocked ventricular system and into the interpenducular cistern (a normal CSF space). Cerebrospinal fluid within the ven- tricle is thus diverted elsewhere in an attempt to bypass an obstruction in the aqueduct of Sylvius and thereby relieve pressure. The objective of this procedure, called an “intracranial CSF diver- sion,” is to normalize pressure on the brain without using a shunt. Endoscopic third ventriculos- tomy is not a cure for hydrocephalus, but rather an alternate treatment. Although open ventriculostomies were performed as early as 1922, they became a less common method of treating hydrocephalus in the 1960s, with the advent of shunt systems. Despite recent advances in shunt technology and surgical techniques, however, shunts remain inadequate in many cases. Specifically, extracranial shunts are subject to complications such as blockage, infec- tion, and overdrainage, often necessitating repeated surgical revisions. For this reason, in selected cases, a growing number of neurosurgeons are recommending endoscopic third ventriculostomy in place of shunting. The ultimate goal of endoscopic third ventriculostomy is to render a shunt unnecessary. Although endoscopic third ventriculostomy is ideally a one-time procedure, evidence suggests that some patients will require more than one surgery to maintain adequate opening and drainage. New Technologies The revived interest in ventriculostomy as a viable alternative treatment approach is largely due to the development of a new technology called neuroendoscopy, or simply endoscopy. Neuro- endoscopy involves passing a tiny viewing scope into the third ventricle, allowing images to be projected onto a monitor located next to the operating table.
    [Show full text]
  • Icd-9-Cm (2010)
    ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular
    [Show full text]
  • The Role of the Liliequist Membrane in the Third Ventriculostomy
    The Role of the Liliequist Membrane in the Third Ventriculostomy Jose Aloysio Costa Val Filho ( [email protected] ) Vila da Serra Hospital: Hospital Vila da Serra https://orcid.org/0000-0003-3261-7147 Sebastião Nataniel da Silva Gusmão Department of Surgery, Faculty of Medicine and Department of Pediatric Neurosurgery of Hospital das Clínicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Leopoldo Mandic Ferreira Furtado Department of Surgery, Faculty of Medicine and Department of Pediatric Neurosurgery of Hospital das Clínicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Guaracy de Macedo Machado Filho Department of Neurosurgery, Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil Fernando Levi Alencar Maciel Department of Neurosurgery, Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil Original Article Keywords: ETV, Hydrocephalus, Liliequist Membrane, Neuroendoscopy Posted Date: February 4th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-171335/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Neurosurgical Review on February 23rd, 2021. See the published version at https://doi.org/10.1007/s10143-021-01508-2. Page 1/23 Abstract Endoscopic third ventriculostomy (ETV) is a hydrocephalus treatment procedure that involves opening the Liliequist membrane (LM). However, LM anatomy has not been well-studied neuroendoscopically, because approach angles differ between descriptive and microsurgical anatomical explorations. Discrepancies in ETV ecacy, especially among children age 2 and younger, may be due to incomplete LM opening.
    [Show full text]
  • HYDROCEPHALUS and SHUNTS: WHAT the NEUROLOGIST SHOULD KNOW *I17 Ian K Pople
    HYDROCEPHALUS AND SHUNTS: WHAT THE NEUROLOGIST SHOULD KNOW *i17 Ian K Pople J Neurol Neurosurg Psychiatry 2002;73(Suppl I):i17–i22 he second most common reason for being sued for negligence in neurosurgery is a problem related to hydrocephalus management (the first being spinal surgery!). However, the good Tnews is that the overall standard of care for patients with hydrocephalus appears to have greatly improved over the last 10 years with the advent of better facilities for investigation, new approaches to treatment, and a greater awareness of the need for adequate follow up. In the possi- ble absence of a local neurosurgeon with an interest in hydrocephalus, a neurologist who is faced with the ongoing care of a patient with hydrocephalus should ideally have a clear idea of what exactly constitutes appropriate follow up and which clinical and radiological warning signals of shunt problems to look out for. c DEFINITIONS Hydrocephalus is an excessive accumulation of cerebrospinal fluid (CSF) within the head caused by a disturbance of formation, flow or absorption. “Hydrocephalus ex vaccuo” is a misnomer. It refers to asymptomatic ventricular enlargement caused by generalised loss of cerebral tissue, from severe head injury, infarction or cerebral hypoxia. “Normal pressure hydrocephalus” is also a misnomer. It describes a condition in older adults of low grade hydrocephalus with intermittently raised intracranial pressure (ICP) (usually at night) causing the classic Adam’s triad of symptoms—gait apraxia, incontinence, dementia. BASIC HYDROCEPHALUS PATHOPHYSIOLOGY IN ADULTS The normal CSF production rate in an adult is 0.35 ml/min (20 ml/hour or 500 ml/24 hours).
    [Show full text]
  • General Neurosurgery Rotation
    NEUROLOGICAL SURGERY RESIDENCY PROGRAM CURRICULUM THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER The curriculum for the Neurosurgical Residency Training Program at The Ohio State University Wexner Medical Center is competency-based and designed to be completed over the duration of the residency. Upon completion of the training program, graduates will have mastered the curriculum and will be compassionate, highly knowledgeable, technically proficient neurosurgeons and academicians who have the potential to be future leaders in Neurosurgery. The competency-based curriculum is rotation specific: Year July to December January to June General Neurosurgery Rotation – General Neurosurgery Rotation – University University Hospital and James Cancer Hospital and James Cancer Center (2 months) Center (4 months) NeuroCritical Care Rotation – University Hospital NeuroOncology Rotation – James and James Cancer Center (3 months) PGY-1 Cancer Center (1 month) Surgical Intensive Care Rotation – University NeuroAnesthesia Rotation – University Hospital (1 month) Hospital and James Cancer Center (1 month) Junior Clinical Rotation (General) – Pediatric Neurosurgery Rotation – Nationwide University Hospital and James Cancer Children’s Hospital (4 months) Center (2 months) Junior Clinical Rotation (Functional/Spine) – PGY-2 Junior Clinical Rotation (Vascular) – University Hospital (2 months) University Hospital (2 months) Junior Clinical Rotation (Oncology) James Cancer Center (2 months) Junior Clinical Rotation (General) – University Pediatric Neurosurgery
    [Show full text]